рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Математика для общего блага

Математика для общего блага - раздел История, История математики. От счетных палочек до бессчетных вселенных   Шестнадцатый Век В Европе Отмечен Обещанием Бесконечных Возмо...

 

Шестнадцатый век в Европе отмечен обещанием бесконечных возможностей. В предшествующие два столетия континент сотрясался различными бедствиями, как природными, так и созданными руками человека: в середине четырнадцатого столетия Черная смерть выкосила фактически половину населения, не обращая внимания на социальный статус и богатство, закончилась Столетняя война между Англией и Францией, вымотав население этих двух стран и физически, и морально. В 1453 году под ударами оттоманских турок пал Константинополь, что стало концом Византийской империи. Одновременно мы можем увидеть расцвет итальянского Ренессанса и гуманистических традиций, сочетание почтения к античности со вновь открытой верой в личную свободу и образование. Изобретение печати и гравюры означало, что новые идеи могли распространяться шире, чем было возможно до этого. Европа с интересом смотрела на остальной мир, увеличивалось количество заморских путешествий, открытий, завоеваний, расширялась торговля. Но навигация требовала точных карт морей и неба, торговля нуждалась в эффективной бухгалтерии – в то время все это было практически не развито. Алгебра, тригонометрия, начертательная геометрия, логарифмы и исчисление – все это либо появилось впервые, либо активно развивалось. Прежде чем повести рассказ об этих достижениях, стоит сказать о возрастающем в то время статусе математики.

Как мы уже видели ранее, математика была неотъемлемой частью обучения в монастырях, она входила в квадривиум, состоящий из арифметики, геометрии, гармонии и астрономии. Но рабское почтение к древним текстам и тесные границы требований к математике духовных властей ограничивало то, что можно было достичь в рамках этой схоластической традиции. Термин «mathematicus» использовался для того, чтобы обозначить или математика, или астролога (Кеплер жаловался, что получал гораздо больший доход от вычисления астрологических диаграмм, чем от своей работы астронома). Хотя в то время не было пока такого явления, как профессиональный математик, экономический рост в Европе создал потребность в большом количестве людей, обученных вычислениям, которые могли заниматься финансовыми и коммерческими расчетами. Эти должности занимали люди не из университетов, а из гильдий и ремесленных цехов. В эпоху Ренессанса сыновья торговцев получали образование, изучая элементарную математику в школах или цехах. Именно там стало очень популярным использование индо‑арабских цифр.

Новые числа пришли в Европу в двенадцатом веке вместе с переводами на латынь из арабских текстов. В 1202 году увидела свет «Книга аббака» (Liber abbaci ) Леонардо Пизанского (ок. 1170 – ок. 1250), известного также как Фибоначчи. Теперь эту книгу считают поворотной вехой в истории математики, но в то время она была намного менее популярной, чем достаточно простая книга «Алгоритм» математика и астронома Джона Холивуда (Халифакса) (ок. 1195 – ок. 1256), более известного как Сакробоско. Название Liber abbaci, к сожалению, скорее вводит в заблуждение. Термин abbacus, с двумя b, относится к методам вычисления, в которых используются новые цифры, и не имеет никакого отношения к вычислительному устройству, известному как «абака». Действительно, существовала конкуренция между сторонниками двух форм вычисления, и лучше использовать термин «алгоритмист» для того, кто использовал технику abbacus, и «мастер абаки» для обозначения человека, который все еще предпочитал абаку или счетную доску. Математика, опытного в использовании техники abbacus, называли maestro d’abbaco – «мастером аббака».

В «Книге аббака» Фибоначчи отвел значительное место коммерческой математике. В международной торговле коммерсантам приходилось иметь дело со множеством различных систем мер и весов, осуществлять сделки в различных валютах, и им нужны были эффективные методы вычислений, чтобы избежать серьезных ошибок. В 1494 году Лука Пачоли издал свой труд «Сумма арифметики, геометрии, учения о пропорциях и отношениях», ныне известный как первая работа о методах бухгалтерии, например о двойной бухгалтерии[9], но это также был свод полезных математических методов того периода, включая приемы из области арифметики, алгебры и геометрии. За шестнадцать лет до этого, в 1478 году, в Тревизо был анонимно напечатан самый ранний учебник по арифметике. В то время нотация была все еще неустойчивой, дроби по‑прежнему записывались в шестидесятеричной нотации или в виде дробных единиц. В шестнадцатом веке стали популярны десятичные дроби, хотя шестидесятеричная запись сохранилась в астрономических вычислениях, а Джон Непер[10]сделал популярной десятичную точку.

Возникла тенденция писать учебники по математике на местном языке, а не на латыни, что делало их более доступными для обычных людей, хотя одновременно препятствовало их распространению вследствие языковых барьеров. Германский математик, выдающийся учитель арифметики Адам Ризе (1492–1559) повлиял на распространение индо‑арабских цифр на территориях, где говорили на немецком языке. Уэльский врач и математик Роберт Рекорд (ок. 1510–1558) был, по‑видимому, первым популяризатором математики. Он написал самые ранние учебники по математике на английском языке, и его работа «Основа искусств» (ок. 1540), посвященная арифметике, переиздавалась больше ста пятидесяти лет. Большинство книг Рекорда были написаны в форме диалога, в них входили схемы и примеры, помогавшие ему в педагогической деятельности, – в каком‑то смысле он был первым ведущим первого в истории курса «дистанционного обучения». Наиболее известная его работа – книга «Точильный камень мудрости» (1557). Это учебник по элементарной алгебре, в котором мы находим первое использование = – знака равенства.

 

 

Как торговцы садятся на корабли, чтобы обрести огромные богатства,

Так и я мог бы с полным правом на встать на их место. Корабли в море, те, что с парусами и драгоценной рудой,

Были впервые созданы и с тех пор делаются

благодаря познаниям в практической геометрии. Их компас, их карты, их блоки, их якоря Были созданы с помощью практических навыков мудрых геометров.

Плотники, резчики по камню, столяры и каменщики, Живописцы, иллюстраторы рукописей, если уж они этим занимаются,

Вышивальщицы, золотых дел мастера, если они хотят быть искусны в своих ремеслах,

Должны применять геометрию при обучении мастерству.

Хорошие и точные карты, а также межи между полями Можно сделать только с использованием геометрии.

И она также нужна Портным и обувщикам, что бы они ни делали,

Их работу не похвалят, если не соблюдены правильные пропорции.

Ткачи используют геометрию при создании тканей, Их ткацкий станок – устройство, созданное удивительным воображением.

Гончарный круг, который вращается, жернов, который вращается,

Мельница, что мелет зерно, приводимая в действие ветром или водой, –

Их работа стала возможной благодаря геометрическим расчетам.

Немногие смогли бы сделать такие же устройства, если бы эти еще не были изобретены.

И все, что требует для изготовления измерений веса или размеров,

Не может быть надежно сделано без знания геометрии.

Часы, измеряющие время, – это самое хитроумное устройство Из всех, что когда‑либо выведал человек.

Теперь, когда они стали обычными, их не ценят, на мастерство часовщика смотрят свысока, его работа не вознаграждается.

Но поскольку они были созданы с помощью геометрии, то люди должны знать:

Нет искусства более изумительного и мудрого, а также более нужного людям, чем добрая геометрия.

 

Роберт Рекорд, из книги «Путь к знанию» (1551)[11]

 

В этом стихотворении мы можем обнаружить два противоположных взгляда на математику, сохранившиеся и в более позднее время: математика как прикладная наука и как исследование, осуществляемое органами чувств. Рекорд всегда оставался верен поиску истины, несмотря ни на какие авторитеты. Он считал математику благородным искусством, призванным искать и открывать подлинные знания. По‑видимому, такое отношение к науке разделяли не все, потому что, хотя он занимал пост управляющего Королевского монетного двора и был к тому же Генеральным контролером шахт и денежного обращения в Ирландии, Рекорд провел последние дни своей жизни в тюрьме, скорее всего, в результате политического доноса.

У современника и коллеги Рекорда, Джона Ди (1527–1609), была похожая успешная карьера, закончившаяся не менее головокружительным падением. Они оба были консультантами в Московской компании, где занимались вопросами навигации и картографии. В 1577 году Ди опубликовал книгу «Искусство навигации». Но больше всего его занимали оккультные науки, на которые в Елизаветинскую эпоху был направлен основной научный интерес ввиду распространения неоплатонических традиций Ренессанса. Ди изучал каббалу и алхимию. Он занимал пост Королевского астролога при королеве Елизавете I, составлял гороскопы и давал советы относительно календарных реформ. Но, вследствие его репутации при дворе, он одновременно вызывал восторженное восхищение и страх, и, хотя он был советником Елизаветы с тех времен, когда она еще не была королевой, Ди понимал, что его враги не дремлют. Он часто чувствовал необходимость публичной защиты, старательно доказывая всем, что его исследования направлены на пользу государства. Действительно, по возвращении из путешествий по Европе ему обещали пенсию, но он так никогда и не получил ее и умер в бедности в 1608 году. В предисловии к «Началам» Евклида в переводе Генри Биллингсли, который позже стал лорд‑мэром Лондона, Ди провозгласил неоценимое значение математики. Эта книга была первым академическим выпуском «Начал» на английском языке, и, вероятно, ее отредактировал сам Ди.

Джон Непер был не профессиональным математиком, а богатым помещиком, шотландским бароном (восьмым лэрдом Мерчистона), и большую часть жизни занимался управлением своим поместьем. Однако он находил время и для того, чтобы писать труды на самые разные темы, и даже был втянут в антипапские богословские дебаты. Хотя к тому времени уже активно использовались индо‑арабские цифры, тем не менее вычисления выполнялись с помощью ручки и бумаги, и люди искали способы ускорить порой очень длинные процедуры вычислений. Неперу приписывают два изобретения, которые очень облегчили вычисления, – кости Непера и логарифмы. Кости Непера, также известные как палочки Непера, – это прутки, на которых были вырезаны таблицы умножения. Они могли быть разложены в виде решетки так, чтобы можно было быстро произвести любое громоздкое умножение. Палочки, по существу, превращали длинное умножение в простые сложения. Изобретение логарифмов также было навеяно жгучим желанием ускорить вычисления. Сам термин был придуман Непером и представляет собой слияние слов logos («слово, пропорция») и arithmos («число»). Многих математиков поражали взаимоотношения между арифметическими и геометрическими рядами и то, что вычисление произведения двух степеней может быть сокращено до вычисления суммы степеней. Открытие Непера заключалось в том, что оно могло относиться к любым степеням, и он составил таблицу логарифмов Непера, которая была опубликована в 1614 году в его книге «Описание удивительной таблицы логарифмов» (на латинском языке).

В исходном рассуждении он не использует основание системы счисления: вместо этого он делит числовую ось до 107, получая части, которые дают вполне удовлетворительный результат для большинства вычислений. Затем он определил отношение: N = 107 (0,9 999 999) L, где L – логарифм N. При этом логарифм 107 = 0, логарифм 9 999 999 = 1. Промежуточные значения варьируются от 0 до 1. В его таблицах описаны скорее логарифмы тригонометрических функций, чем натуральных чисел, что отражает раздражавшие его проблемы с утомительными вычислениями, необходимыми в астрономии и навигации. Одним из больших поклонников Непера был Генри Бриггс, первый савильянский профессор геометрии в Оксфорде (иначе говоря, первый профессор Савильянской кафедры геометрии, учрежденной в Оксфордском университете в 1619 году). Они оба пришли к выводу, что можно построить более практичную таблицу, задав соответствие log 1 = 0 и log 10 = 1. Но в 1617 году Непер умер, и именно Бриггсу выпало составить первую таблицу логарифмов с основанием 10, которая служит основой для той таблицы, что мы знаем теперь. Эта таблица была составлена для чисел от 1 до 1000; в 1624 году Бриггс расширил ее до 100 000. Оба набора логарифмов были вычислены до 14 десятичных знаков. Преимущество наличия фиксированного основания заключалось в том, что удаление из вычислений множителя 107 продемонстрировало фундаментальное правило логарифмов – логарифм произведения двух чисел равен сумме отдельных логарифмов. Сегодняшние калькуляторы сделали ненужными таблицы логарифмов, тригонометрических функций и обратных чисел, равно как и логарифмические линейки, но в то время таблицы Бриггса считались замечательным бытовым прибором, существенно ускоряющим и облегчающим вычисления. Штурманы на кораблях, которые должны были постоянно высчитывать синусы и косинусы, увидели, что привычная для них задача умножения двух семизначных чисел сократилась до обращения к логарифмам, выполнения одного сложения, а затем повторного обращения к таблице, где обратный логарифм даст необходимый ответ. Прежде, когда вычисление могло занять целый час, полученный ответ на целый час отличался от положения корабля в настоящий момент. Теперь вычисления сократились всего до нескольких минут.

Фрэнсис Бэкон (1561–1626) не был ни математиком, ни ученым и все же, как и Платон, имел огромное влияние на философию науки. Во времена господства королевы Елизаветы он был членом палаты общин и одним из советников королевы, хотя без соответствующих полномочий. Его карьера резко пошла в гору после вступления на престол короля Якова I. Он последовательно занимал ряд весьма влиятельных постов. Самым значительным его карьерным достижением было получение в 1618 году поста лорд‑канцлера. Во времена, когда покровительство и раздача постов своим людям были совершенно обычным явлением, кажется странным, что в 1621 году Бэкона привлекли к ответственности за взяточничество. Несмотря на это, Яков I продолжал платить ему пенсию, и отставка, похоже, больше ударила по гордости Бэкона, чем по его карману. Его публикации инициировали процесс, благодаря которому натурфилософия стала важной темой как для правительства, так и для Короны. Его труды «О достоинстве и приумножении наук» (1605) и «Великое восстановление наук. Новый Органон» (1620) были посвящены Якову I и служили призывом к королю стать покровителем науки. Труды Бэкона повлияли на более поздних ученых вроде Ньютона и Галлея, которым приписывается честь быть английским краеугольным камнем научной революции, духовной основой создания Королевского общества. Его положение также означало, что наука получила мощного защитника с политическим и финансовым влиянием. Знание было силой, и наука стала цениться как двигатель к дальнейшему процветанию, ко Всеобщему Благу, представление о котором Бэкон ввел в своем труде «Новый органон». Взгляды Бэкона на математику были чрезмерно прагматичными – он считал математику языком науки и инструментом, находящимся в ее распоряжении. Но он также обладал достаточной скромностью и предвидением, предсказав, что математика – не статичная дисциплина и наверняка будут возникать новые ветви этой науки. Использование математики торговцами, навигаторами и учеными считалось зримой помощью для создания большего богатства нации. Развитие математики больше не было заботой всего лишь нескольких ученых, это был набат, который услышали практически все.

 

 

Если начинать знакомить дитя с числами с той

минуты, когда оно лишь пробует лепетать,

это, возможно, не обогатит государство, отдельного

человека или ребенка,

но послужит пополнению копилки мудрости всего

человечества.

Числа есть повсюду – от важнейших деяний

до мелких дел,

Так что тот, у кого нет навыков счета, может быть

уподоблен животному:

Ведь что может быть более скотоподобным,

чем нежелание людей

Изучать искусство, которое должно помочь им

намного превзойти всех остальных тварей.

Неумение считать отбрасывает человека к его

изначальному состоянию.

Умение считать – это (почти) все, что отделяет

человека от животного,

Каждому мужчине необходимо научиться считать.

Нужно постичь это искусство,

Если ты решил стать военным или тебя ждут

при дворе,

На службе или в деревне, где ты обитаешь, или

если ты решил

посвятить дни своей жизни физике, философии либо

изучению законов,

будь уверен, что без этого искусства ты никогда

не сможешь добиться успеха.

Я не сказал еще об астрономии, а также о геометрии,

космографии, географии и многом другом,

О музыке с ее приятными мелодиями, то есть

обо всем, что, не изучив искусство счета,

Ты никогда не сможешь постичь ни полностью,

ни даже частично.

Не зная чисел, ты не сможешь также быть аудитором

или сделать правильные наблюдения,

Произвести правильные подсчеты.

Если ты хочешь быть торговцем, не расставайся

с этой книгой,

И ты найдешь в ней необходимые тебе правила,

любые, какие только пожелаешь.

Если ты всего лишь ремесленник, даже тогда ты

найдешь здесь такие вещи,

Которые сослужат тебе добрую службу и обогатят

твой разум.

Даже если ты пастух, тебе будет довольно трудно

Выполнять свои обязанности без помощи чисел.

Чтобы перечислить все выгоды, которые числа

приносят человеку,

здесь пришлось бы потратить очень много места,

намного больше, чем я могу сделать.

Вот почему я говорю только одно и отбрасываю все

остальное:

без этого искусства человек – не человек,

а каменный валун.

 

Томас Хиллес.

Искусство обыкновенной арифметики (1592)[12]

 

 

– Конец работы –

Эта тема принадлежит разделу:

История математики. От счетных палочек до бессчетных вселенных

История математики От счетных палочек до бессчетных вселенных...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Математика для общего блага

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Вступление
  Я наконец понял: большую часть жизни я боролся за то, чтобы сломать привычное представление, застрявшее в групповом менталитете моих сограждан. Сущность этог

Начало начал
  В любой книге должна быть первая глава со вступительным словом. История – не слишком однозначный и четкий предмет, так что поиск первого использования чисел – это путешествие в тума

Блюстители неба
  В самом начале математика развивалась, обслуживая нужды торговли и сельского хозяйства, но, помимо того, она также была связана с выполнением религиозных обрядов и наблюдением за дв

Теорема Пифагора
  Каждый из нас сталкивался в школе с этой теоремой. Сейчас ее называют «теоремой Пифагора», но она была широко известна в древности задолго до рождения знаменитого грека. Существован

Десять книг счетного канона
  Поначалу китайская цивилизация развивалась по берегам рек Янцзы (Длинная) и Хуанхэ (Желтая) во времена легендарной династии Ся во втором тысячелетии до нашей эры. Династия Чан прави

Математические сутры
  Древнейшие свидетельства о наличии математики в Азии мы видим в следах цивилизации Хараппы, существовавшей в долине Инда; они датируются концом четвертого – началом третьего тысячел

Дом Мудрости
  В седьмом веке нашей эры на Аравийском полуострове возникла новая монотеистическая религия, которая должна была втиснуться между христианским и персидским мирами. В 622 году пророк

Семь свободных наук и искусств
  В 529 году Юстиниан, римский император и христианин, закрыл языческие философские школы, включая Академию в Афинах. Так подошла к концу тысячелетняя история греческой математики. Мн

Перспектива в эпоху Возрождения
  Очень много писалось об итальянском Ренессансе как о периоде, определившем направление европейского сознания. Пробуждение интереса к классическим наукам соединилось с желанием выйти

Бракосочетание алгебры и геометрии
  Начиная со времен древней Греции математика была раздроблена на две основных ветви – геометрию и арифметику. Первая оперировала размерами, вторая – числами. Но между ними никогда не

Вселенная как часовой механизм
  В шестнадцатом веке основным источником информации об орбитах планет оставался «Альмагест» Птолемея (см. Главу 2). Громоздкая структура Птолемеевой системы эпициклов и деферентов пр

Математика в движении
  Мы уже упоминали, что Ньютон и Кеплер моделировали орбиты планет исключительно геометрически. Однако в космическом пространстве не существует реальных эллипсов, они – лишь невидимые

Океаны и звезды
  Все ранние цивилизации занимались составлением карт. Цели ставились разные – строительство, сбор налогов или подготовка к войне, однако землемер – одна из самых древних профессий, д

Уравнение пятой степени
  В XVI веке математики почти случайно натолкнулись на комплексные числа (см. Главу 11). К XVIII веку комплексные числа считались расширением области действительных чисел, но работа с

Новые геометрии
  С тех пор как в третьем столетии до нашей эры появились «Начала», евклидова геометрия (см. Главу 4) считалась самой совершенной из всех математических систем. Основанная на самых об

Диалекты алгебры
  В главе 11 мы видели, как алгебра освобождалась от кандалов геометрической размерности и как, начиная с Декарта, символы алгебры – те самые х и у – могли обозначать лю

Поля деятельности
  С середины восемнадцатого века события в дифференциальном и интегральном исчислениях шли рука об руку с развитием математического анализа физических явлений, особенно движения. Иссл

Заманчивая бесконечность
  Математики и философы всегда боролись с понятием бесконечности. Греки боялись бесконечности и ее противоположности – бесконечно малых величин. Их страх время от времени всплывал на

Об игральных костях и генах
  Исследование вероятности в том виде, каким мы видим это сегодня, началось лишь в семнадцатом веке, однако изучение комбинаций и перестановки объектов или событий имеет более длинную

Военные игры
  Люди всегда любили играть в игры, и в каждую эпоху существовало свое повальное увлечение. Большинство игр – сочетание умения и удачи, и лишь после многократных розыгрышей, нивелирую

Математика и современное искусство
  В двадцатом веке произошли множество научных открытий и взрыв технологического развития физики, биологии и гуманитарных наук. В эпоху Просвещения считалось, что накопленные знания о

Машинные коды
  В истории математики существовало множество параллельных течений, из которых то одно, то другое периодически выходило на передний план. Такими были отношения между арифметикой и гео

Хаос и сложность
  С начала девятнадцатого века математика рассматривалась как аналитический и логический предмет; к концу столетия она произвела на свет целый зверинец математических монстров, вроде

Благодарности
  Я премного благодарен профессору Айвору Граттану‑Гиннесу за его решительную поддержку моих разнообразных проектов, а также за его долготерпение и благоразумные советы касатель

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги