рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Показатели размера и интенсивности вариации.

Показатели размера и интенсивности вариации. - раздел Математика, СТАТИСТИКА   Для Измерения Размера И Интенсивности Вариации Значений Призн...

 

Для измерения размера и интенсивности вариации значений признака используют абсолютные и относительные показатели.

К абсолютным показателям вариации относят: размах вариации R, среднее линейное отклонение , дисперсию , среднее квадратическое отклонение (табл. 18).

 

Таблица 18

 

Абсолютные показатели вариации

 

Название показателя Формула расчета
при использовании индивидуальных данных при использовании сгруппированных данных
1. Размах вариации 2. Среднее линейное отклонение     3. Дисперсия   4. Среднее квадратическое отклонение

 

Размах вариации является простейшим и самым приблизительным показателем. В его исчислении участвуют лишь два крайних значения признака (максимальное и минимальное), поэтому он не отражает закономерностей вариации всей совокупности.

В нашем примере размах вариации сменной выработки деталей составляет: в первой бригаде – R1 = 10 шт. (то есть 105 – 95); во второй бригаде – R2 = 50 шт. (то есть 125 – 75), что в 5 раз больше. Это свидетельствует о том, что при численном равенстве средняя выработка первой бригады более «устойчива». Размах вариации может служить базой расчета возможных резервов роста выработки. Таких резервов больше у второй бригады, поскольку в случая достижения всеми рабочими максимальной для этой бригады выработки деталей, ею может быть изготовлено 375 шт., то есть (3 х 125), а в первой – только 315 шт., то есть (3 х 105).

Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и дает обобщенную характеристику. Простейший показатель такого типа – среднее линейное отклонение.

Среднее линейное отклонение учитывает все отклонения индивидуальных значений признака от средней величины, но без учета знака (это связано с одним из свойств средней арифметической: Σ (х - ) = 0). Этот показатель отражает среднее отклонение значений изучаемого признака от средней величины, легко интерпретируется и рассчитывается, но его нельзя поставить в соответствии с каким-либо вероятностным законом, в том числе и с нормальным распределением.

Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных).

Формулы дисперсий можно преобразовать, учитывая, что

то есть дисперсия равна разности средней из квадратов вариантов и квадрата их средней.

Дисперсия не имеет единиц измерения.

Среднее квадратическое отклонение есть корень квадратный из дисперсии. В реальных совокупностях σ всегда больше . Соотношение зависит от наличия в совокупностях резких, выделяющихся отклонений и может служить показателем неоднородности совокупности (чем выше это соотношение, тем больше степень неоднородности). Для нормального закона распределения σ ≈1,25.

Абсолютные показатели вариации отражают с различной степенью точности размеры вариации в изучаемой совокупности, но не позволяют:

1) судить об интенсивности вариации значений признака;

2) сравнивать размеры вариации в различных совокупностях.

Для этого используются относительные показатели вариации. Они рассчитываются как отношение абсолютных показателей вариации к средней арифметической величине признака. К таким показателям относят:

1) относительный размах вариации -

2) относительное среднее линейное отклонение -

3) коэффициент вариации -

Оценка степени интенсивности вариации возможна только в отношении каждого отдельного признака и совокупности определенного состава. Такая оценка заключается в сравнении относительного показателя вариации (чаще всего коэффициента вариации) с некоторой обычной величиной, принимаемой за норматив.

Если коэффициент вариации составляет не менее 33,3 %, исследуемая совокупность считается весьма неоднородной и для проведения дальнейшего анализа должна быть разгруппирована.

Отношение размаха вариации к средней арифметической в процентах называется коэффициентом осцилляции:

В нормальном ряду распределения между , D, σ, R существуют определенные соотношения.

следовательно

Зная и σ, можно представить размах вариации как R =± 3σ.

При достаточно большом объеме совокупности между σ и D существует соотношение σ = 1,25 D.

– Конец работы –

Эта тема принадлежит разделу:

СТАТИСТИКА

Федеральное агентство по образованию... Государственное образовательное учреждение высшего профессионального образования...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Показатели размера и интенсивности вариации.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ББК 65.9 (2 Рос) 29 73
Моисеева Е.В. Статистика: Учебное пособие, конспект лекций, - часть 1. - Чебоксары: Чуваш. гос. пед. университет     Рецензенты: Кафед

Понятие статистики и краткие сведения из ее истории.
  Термин «Статистика» (status) – происходит от латинского слова. «Статус» (status) в переводе означает положение, состояние явлений. Это одна из общественных наук имеющая своей целью

Предмет, метод, задачи и организация статистики.
  Объектом изучения статистики является общество во всем многообразии ее форм и проявлений, т.е. массовые явления и процессы Предметом статистики выступают разм

Понятие статистического наблюдения.
Для исследования социально-экономических явлений и процессов общественной жизни необходимо иметь информацию. Слово «информация в переводе с латыни означает «осведомленность». Стат

Формы, виды и способы статистического наблюдения.
На этапе подготовки обследования данных необходимо определить формы, виды и способы статистического наблюдения. Статистическое наблюдение осуществляется в трех формах:

Понятие о сводке.
Получаемая в процессе статистического наблюдения информации об отдельных единицах совокупности характеризует их с различных сторон. Однако характеристику в целом можно получить, систематизируя и об

Задачи и виды группировок.
Изучаемые явления и процессы протекают в качественно однородных совокупностях. Однако их однородность не является абсолютной, что позволяет делить совокупность на частные подсовокупности., т.е. исп

Ряды распределения.
Результаты сводки и группировки оформляются в виде статистических рядов распределения. Статистические ряды распределения представляют собой упорядоченное расположение

Сводка и группировка статистических данных
 

Понятие, формы, виды статистических показателей.
Обобщающие статистические показатели отражают количественную сторону изучаемой совокупности общественных явлений, представляют собой их величину, выраженную соответствующей единицей измерения. Эти

Абсолютные и относительные показатели.
Под абсолютными величинами в статистике понимают показатели, которые характеризуют размеры изучаемых явлений и процессов. Например, объем товарной продукции предприятия, численност

Сущность и значение средних величин.
  Средней величиной в статистике называется обобщающая количественная характеристика признака в статистической совокупности, отражающая типичный уровень этого признака в расчет

Средняя геометрическая
  Средняя геометрическая применяется в тех случаях, когда индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных

Средняя квадратическая и средняя кубическая
  В ряде случаев в экономической практике возникает потребность расчета среднего размера признака, выраженного в квадратных или кубических единицах измерения. Тогда применяется сре

Понятие о вариации.
  Под вариацией понимают различие значений признака у единиц совокупности в один и тот же период или момент времени. Это колеблемость, многообразие, изменчивость значений признака, не

Свойства дисперсии и способы ее исчисления.
  Показатель дисперсии обладает рядом математических свойств, использование которых значительно упрощает ее исчисление. Рассмотрим некоторые из этих свойств: 1. Если

Использование дисперсии в изучении взаимосвязи между явлениями.
  Если совокупность разбита на группы в результате проведения аналитической группировки, то для оценки влияния факторного признака (группировочного) на результативный можно разложить

Понятие о рядах динамики. Правила построения рядов динамики.
Одна из важнейших задач статистики – изучение изменений анализируемых показателей во времени, т.е. их динамика. Эта задача решается при помощи анализа рядов динамики (или временных рядов).

Анализ показателей ряда динамики.
При изучении динамики общественных явлений возникает проблема описания интенсивности изменения и расчета средних показателей динамики. Анализ интенсивности изменения во времени осуществляе

Метод укрупнения интервалов, скользящей (подвижной) средней.
Одна из важных задач статистики – определение в рядах динамики общих тенденций развития явления. Основой тенденцией развития называется плавное устойчивое изменение уровня явления во времени, свобо

Метод аналитического выравнивания.
Для того, чтобы дать количественную модель выражающую основную тенденцию изменения уровня динамического ряда во времени используется аналитическое выравнивание ряда динамики. Основное содержание ме

Экстраполяция в рядах динамики и прогнозирование.
Необходимым условием регулирования рыночных отношений являются составление надежных прогнозов развития социально-экономических явлений. Выявление и характеристика трендов и моделей взаимос

Методы изучения сезонных колебаний.
При сравнении квартальных и месячных данных многих социально – экономических явлений часто обнаруживаются периодические колебания, возникающие по влиянием смены времен года. Они являются результато

Понятие выборочного наблюдения.
Выборочным наблюдениемназывается такое наблюдение, при котором обследованию подвергается некоторая часть совокупности, а обобщающие показатели, характеризующие эту исследуемую сово

Ошибки выборочного наблюдения.
В теории выборочного наблюдения есть понятие, как ошибка выборки. Ошибка выборки – отклонения выборочных характеристик от генеральных. Определяется формулами:

Виды выборки.
В статистике применяется несколько видов выборки. Вид выборочного наблюдения определяется способом отбора. Из генеральной совокупности можно отбирать единицы в индивидуальном порядке. При индивидуа

Индивидуальные индексы.
  Индивидуальные индексы выражают соотношение отдельных элементов совокупности. Так, если в 2004 г.грузооборот по видам транспорта общего пользования Чувашской Ре

Общие индексы.
Общие индексы показывают соотношение совокупности явлений, состоящей из разнородных, непосредственно несоизмеримых элементов. Например, несмотря на различия потребительских сто

Индексы средних величин.
Индексный метод факторного анализа широко применяется в изучении динамики среднего уровня качественного показателя. При этом строится система индексов переменного состава, постоянного (или фиксиров

Средний арифметический и средний гармонический индекс.
  Агрегатные индексы цен, физического объема товарооборота и др. могут быть вычислены при условии, если известны индексируемые величины и веса, т.е. p и q. Но в ряде случаев мы не рас

Индивидуальные индексы цен.
  Таблица 40   1. Базисные индексы.

Понятие о корреляционной связи и условия применения корреляционно-регрессионного анализа (КРА).
Принятие управленческих решений в экономике и социальной сфере невозможно без оценки характера, направления, силы и формы связи между различными явлениями. В статистике различают два типа связей ме

Выбор формы уравнения регрессии и расчет его параметров.
  В самом общем виде изучение корреляционной связи имеет две цели: 1) измерение параметров уравнения, выражающего связь средних значений переменной у со значениями переменной х; 2) из

Показатели тесноты связи и оценка их надежности при парной корреляции.
  Теснота связи при парной корреляции (как в случае линейной, так и нелинейной зависимости) может быть измерена с помощью показателей корреляционного отношения (η) и коэффициента

Понятие о множественной корреляции.
  Ранее мы рассматривали оценку взаимосвязи лишь между двумя признаками. Однако в действительности на результативный показатель влияют не один, а множество факторов. Наиболее существе

Оценка надежности параметров парной и множественной корреляции.
Показатели силы и тесноты связи, исчисленные по ограниченной совокупности, сохраняют элемент случайности, свойственный индивидуальным значениям признака. Поэтому они являются лишь оценками определе

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги