Реферат Курсовая Конспект
Среднее ускорение при неравномерном движении - раздел Механика, Федеральное агенТство по образованию ...
|
.
Принцип относительности Галилея (в классической механике) – никакие опыты, проводимые в инерциальных системах отсчета с механическими приборами, не позволяют установить, покоится система отсчета или движется равномерно и прямолинейно по отношению к другой инерциальной системе отсчета. Предполагается, что время не зависит от относительного движения систем отсчета.
Преобразования Галилея определяют положение произвольной материальной точки в двух инерциальных системах отсчета, одна из которых движется со скоростью vo относительно другой (при условии, если направление скорости v0 совпадает с направлением ro):
r = r' + r0 = r' + vot; t = t',
где rи r' – радиус-векторы, определяющие положение материальной точки в неподвижной и подвижной системе отсчета в данный момент времени;
ro – радиус вектор, определяющий положение начала координат системы К' (подвижной) в системе К (неподвижной).
В проекциях на оси координат в произвольный момент времени t положение выбранной точки в системе К можно определить так:
x = x' + v0xt, x' = x – v0xt,
у = у' + v0уt, у' = у – v0уt,
z = z' + v0zt, z' = z – v0zt,
t = t'. t = t'.
Ковариантные или инвариантные уравнения – уравнения, обе части которых при переходе от одной системы координат к другой преобразуются одинаково и сохраняют свой вид во всех инерциальных системах отсчета.
Закон сложения скоростей в классической механике:
v= v' + v0.
Относительное расстояние между выбранными точками пространства в системах отсчета определяется соотношением – они абсолютны, т.е. инвариантны:
1) в подвижной:
;
2) в неподвижной:
.
Инварианты преобразований – инвариантные величины (расстояния между телами (точками), промежутки времени между событиями, относительные скорости тел, ускорения).
Вращательное движение твердого тела вокруг неподвижной оси –движение, при котором какие-либо две его точки остаются неподвижными в процессе движения. Прямая, проходящая через эти точки, – ось вращения; все остальные точки твердого тела описывают окружности в плоскостях, перпендикулярных к оси вращения, центры которых лежат на этой оси (рис. П1.3).
Основные кинематические характеристики вращательного движения (рис. П1.4):
1) угол поворота Dj – угол, отсчитанный между двумя последовательными положениями радиуса R;
2) угловая скорость w – векторная физическая величина, показывающая, как изменяется угол поворота Dj в единицу времени, численно равная первой производной от угла поворота по времени. Вектор угловой скорости направлен вдоль оси вращения в сторону, определяемую правилом правого винта:
.
3) угловое ускорение e – векторная физическая величина, характеризующая изменение угловой скорости в единицу времени, численно равная первой производной от угловой скорости по времени или второй производной от угла поворота по времени Направление вектора углового ускорения совпадает с направлением вектора угловой скорости в случае ускоренного вращения и противоположно – в случае замедленного:
Период вращения (T) – время, в течение которого тело совершает один полный оборот.
Частота вращения (n) – число оборотов, совершаемых в единицу времени.
Круговая (циклическая) частота ω – число оборотов, совершаемых за время, равное 2π.
Связь между периодом, частотой и круговой частотой:
ω = 2π n = 2π / T; n = 1 / T.
Связь между линейными и угловыми скоростями и ускорениями
Колебательные движения (колебания) – движения или процессы, обладающие повторяемостью во времени.
Гармонические колебания (простейший вид колебаний) – движения, при которых смещение материальной точки (тела) от положения равновесия изменяется по закону синуса или косинуса (рис. П1.5):
x = x0×sin (w0t + j0),
где x – смещение это удаление материальной точки от положения равновесия в данный момент времени t;
x0 – амплитуда колебаний это максимальное удаление материальной точки от положения равновесия;
(wt + j0) – фаза колебаний. Периодически изменяющийся аргумент функции, описывающей колебательный или волновой процесс. Определяет положение материальной точки в данный момент времени t;
j0 – начальная фаза колебаний. Определяет положение материальной точки в начальный момент времени t = 0;
w = 2p / T = 2p n – круговая (циклическая) частота колебаний;
T – период колебаний;
n – частота колебаний.
Скорость при гармоническом колебательном движении (колебательная скорость) – физическая величина, которая показывает, как изменяется смещение в единицу времени, численно равная первой производной от смещения по времени:
.
Ускорение при гармоническом колебании – физическая величина, которая показывает, как изменяется скорость в единицу времени, численно равная первой производной от скорости или второй производной от смещения по времени:
.
Знак «минус» означает, что ускорение направлено в сторону, противоположную смещению.
Сложение гармонических колебаний одного направления (рис. П1.6) с одинаковыми амплитудами и частотами (x01 = x02; w1 = w2 = = w), но разными начальными фазами (j02 ¹ j01) проводят аналитически. Уравнение результирующего колебания имеет вид
где – амплитуда результирующего колебания;
– фаза результирующего колебания.
Биениявозникают при сложение колебаний одного направления (рис. П1.7), с одинаковыми амплитудами (x02 = x01), начальными фазами j01 = j02 = 0 и круговыми частотами, мало отличающимися друг от друга (w1 » w2). Уравнения таких колебаний имеют вид
x1 = x01×sin w1t; x2 = x01×sin w2t.
Уравнение результирующего колебания:
,
где – амплитуда результирующего колебания, которая зависит от Dw = w1 – w2 – разности частот складываемых колебаний;
– смещение результирующего колебания, изменяющееся по гармоническому закону.
Частота и период результирующего колебания:
Частота и период изменения амплитуды в этом случае:
Сложение взаимно перпендикулярных колебаний приводит к тому, что траектория движения представляет собой замкнутые фигуры, называемые фигурами Лиссажу (рис. П1.8):
1) сложение колебаний с одинаковыми частотами (w1 = w2 = w), различными амплитудами (x0 ¹ y0) с начальными фазами j1 = j2 = 0 – результирующее колебание – гармоническое. Траектория движения – прямая линия, уравнение которой имеет вид
y = (y0/x0)×x.
2) сложение колебаний, начальные фазы j1 и j2 которых отличаются на p/2 (j1 – j2 = p/2) – результирующее колебание – гармоническое. Траектория движения – эллипс (при равных амплитудах x0 = y0 – траектория результирующего движения – окружность) с полуосями, равными x0 и y0, уравнение которого
(y/y0)2 + (x/x0)2 = 1;
3) сложение колебаний, периоды которых относятся как целые числа – через промежуток времени, равный наименьшему кратному обоих периодов, движущаяся точка возвращается в начальное положение – получаются фигуры Лиссажу более сложной формы.
Динамика изучает движение и взаимодействия тел совместно с причинами, обусловливающими тот или иной характер движения и взаимодействия.
Основная задача динамики – для данного тела по известной силе найти его ускорение и, наоборот, по известному ускорению найти результирующую силу, действующую на тело.
Массаm – физическая величина, характеризующая количество вещества, инертность, гравитационные свойства и энергию материального тела. Массу тела, определяющую его инертные свойства, называют инертной массой.
Центр масс (или центр инерции) системы – воображаемая точка С, положение которой характеризует распределение массы этой системы и определяется радиус-вектором:
,
где mi и ri – соответственно масса и радиус-вектор i-й материальной точки;
n – число материальных точек в системе.
– Конец работы –
Эта тема принадлежит разделу:
Государственное образовательное учреждение... высшего профессионального образования... Курский государственный технический университет...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Среднее ускорение при неравномерном движении
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Твитнуть |
Новости и инфо для студентов