Момент силы - раздел Механика, Недоказанная и неопровергнутая гипотеза называется открытой проблемой · ...
· Момент силы. Рис.
Момент силы. Рис.
Момент силы, величина, характеризующая вращательный эффект силы при действии её на твёрдое тело; является одним из основных понятий механики. Различают М. с. относительно центра (точки) и относительно оси.
М. с. относительно центра О величина векторная. Его модуль Mo = Fh, где F — модуль силы, a h — плечо, т. е. длина перпендикуляра, опущенного из О на линию действия силы (см. рис.); направлен вектор Mo перпендикулярно плоскости, проходящей через центр О и силу, в сторону, откуда поворот, совершаемый силой, виден против хода часовой стрелки (в правой системе координат). С помощью векторного произведения М. с. выражается равенством Mo = [rF], где r — радиус-вектор, проведённый из О в точку приложения силы. Размерность М. с. — L2MT2, единицы измерения — н×м, дин×см (1 н×м = 107 дин×см) или кгс×м.
М. с. относительно оси величина алгебраическая, равная проекции на эту ось М. с. относительно любой точки О оси или же численной величине момента проекции Рху силы F на плоскость ху, перпендикулярную оси z, взятого относительно точки пересечения оси с плоскостью. Т. е.
Mz = Mo cos g = ± Fxyh1.
Знак плюс в последнем выражении берётся, когда поворот силы F с положительного конца оси z виден против хода часовой стрелки (тоже в правой системе). М. с. относительно осей x, y, z могут также вычисляться по формулам:
Mx= yFz — zFy, My = zFx— xFz, Mz = xFy — yFx,
где Fx, Fy, Fz — проекции силы F на оси; х, у, z — координаты точки А приложения силы.
Если система сил имеет равнодействующую, то её момент вычисляется по Вариньона теореме.
Вращательный момент — Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент) физическая величина, характеризующая вращательное действие силы на твёрдое тело. Момент силы приложенный к гаечному ключу Отношение между векторами силы, момента силы.
Физика тесно связана с математикой математика предоставляет аппарат с помощью которого физические законы могут быть точно сформулированы... Тео рия греч рассмотрение... Стандартный метод проверки теорий прямая экспериментальная проверка эксперимент критерий истины Однако часто...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:
Момент силы
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Принцип относительности в механике
Инерциальные системы отсчета и принцип относительности.
Преобразования Галилея. Инварианты преобразования. Абсолютные и
относительные скорости и ускорения. Постулаты специальной т
Векторная величина
Векторная величина (вектор) – это физическая величина, которая имеет две характеристики – модуль и направление в пространстве.
Примеры векторных величин: скорость (
Вращательное движение материальной точки.
Вращательное движение материальной точки - движение материальной точки по окружности.
Враща́тельное движе́ние — вид механического движения. При
Скорость и ускорение при криволинейном движении.
Криволинейное движение более сложный вид движения, чем прямолинейное, поскольку даже если движение происходит на плоскости, то изменяются две координаты, характеризующие положение тела. Скорость и
Ускорение при криволинейном движении.
Рассматривая криволинейное движение тела, мы видим, что его скорость в разные моменты различна. Даже в том случае, когда величина скорости не меняется, все же имеет место изменение направления скор
Центр масс
центр инерции, геометрическая точка, положение которой характеризует распределение масс в теле или механической системе. Координаты Ц. м. определяются формулами
Закон движения центра масс.
Воспользовавшись законом изменения импульса, получим закон движения центра масс:
dP/dt = M∙dVc/dt = ΣFi
Центр масс системы движется так же, как дв
Пластическая деформация
Согнем немного стальную пластинку (например, ножовку), а затем через некоторое время отпустим ее. Мы увидим, что ножовка полностью (во всяком случае на взгляд) восстановит свою форму. Если возьмем
ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ
. В механике внешними силами по отношению к данной системе материальных точек (т. е. такой совокупности материальных точек, в которой движение каждой точки зависит от положений или движений всех ос
Кинетическая энергия
энергия механической системы, зависящая от скоростей движения её точек. К. э. Т материальной точки измеряется половиной произведения массы m этой точки на квадрат её скорости
Кинетическая энергия.
Кинетическая энергия - энергия движущегося тела.(От греческого слова kinema - движение). По определению кинетическая энергия покоящегося в данной системе отсчета
Кинетическая энергия вращающегося тела
Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материаль
Новости и инфо для студентов