рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

МК-систем

МК-систем - раздел Высокие технологии, Однокристальные микроконтроллеры ОМК позволяют существенно расширить интеллектуальные возможности различного рода устройств и систем Как Уже Отмечалось, При Проектировании Мк-Систем Прежде Всего Возникает Необх...

Как уже отмечалось, при проектировании МК-систем прежде всего возникает необходимость решения задачи об оптимальном (по ряду критериев) распределении функций между аппаратурными средствами и программным обеспечением.

При этом в самом общем случае необходимо исходить из того, что использование специализированных интерфейсных БИС упрощает разработку и обеспечивает высокое быстродействие системы в целом, но сопряжено с увеличением стоимости, объёма и потребляемой мощности. Больший удельный вес программного обеспечения позволяет сократить число компонентов системы и стоимость её аппаратурных средств, но это приводит к снижению быстродействия, увеличению затрат и сроков разработки и отладки прикладных программ. При этом еще может несколько увеличиться и число БИС внешней памяти МК-системы. Решение о выборе того или иного варианта распределения функций между аппаратурными и программными средствами системы принимается в зависимости от тиражности изделия, ограничений по стоимости, объёму, потребляемой мощности и быстродействию изделия. Попутно отметим, что время жизни изделия, в котором большая часть функций реализованы в программном обеспечении, многократно возрастает за счет того, что срок "морального старения" изделия может быть существенно отодвинут. Программная реализация основных элементов алгоритма работы контроллера допускает модификацию относительно простыми средствами (путем перепрограммирования), в то время как возможность изменения уже существующей фиксации элементов алгоритма в аппаратуре контроллера практически отсутствует.

Довольно распространенная практика работы "тандемом", когда над разработкой прикладных программ для МК совместно работают профессиональный программист и непрограммирующий профессионал, то есть, специалист, владеющий "тайнами ремесла" в конкретной предметной области, имеет серьёзным недостатком то, что при попытках изложить программисту смысл прикладной задачи этот смысл зачастую ускользает. В результате такой практики формализуются и программируются наиболее очевидные, грубо говоря - тривиальные, прикладные задачи, а наиболее профессионально интересные остаются вне пределов досягаемости. Видимо, это объясняется тем, что время, необходимое на формализацию профессиональных знаний при работе "тандемом", нередко составляет до 70% всего времени, требующегося для получения законченного микроконтроллерного изделия.

Работа "тандемом" в огромном большинстве случаев приводит к тому, что конечный пользователь МК-системы отказывается от своих ранее сформулированных требований на программу и утверждает, что "имелось в виду нечто похожее, но не это". Такое положение, скорее всего, объясняется тем, что начало процесса программирования задач, которые ставит конечный пользователь, немедленно изменяет его собственное представление об этих задачах. Отметим попутно, что до 60% ошибок прикладных программ для МКУ и МКС вызваны не ошибками в машинных кодах, не логическими ошибками в программе, а ошибочной формализацией прикладной задачи. Трудоемкость устранения этих ошибок, наработанных "тандемом" (профессиональный программист - непрограммирующий профессионал), столь велика, что зачастую вынуждает приступить к разработке прикладной программы МК-системы заново и с иными средствами.

Ресурсы, затрачиваемые собственно на программирование, т.е.на получение машинных кодов, столь незначительны по сравнению с ресурсами, затрачиваемыми на процесс формализации прикладной задачи и разработку алгоритма, что следует говорить не о проблеме разработки прикладного программного обеспечения МК-систем, а о проблеме формализации профессиональных знаний конечного пользователя микроконтроллерных изделий.

Подобно тому как появление микропроцессорных и микроконтрол-лерных средств привело к продолжающемуся процессу перемещения ос-новного объёма затрат на проектирование контроллеров из сферы разработки аппаратурных средств в сферу разработки программного обеспечения, так и стремительное расширение возможных областей применения МК приводит к перемещению центра тяжести усилий по разработке прикладного программного обеспечения с фазы реализации на фазу постановки и формализации задачи.

Сложившаяся к настоящему времени структура трудозатрат в разработке МК-систем позволяет выделить три основные стадии про-ектирования прикладного программного обеспечения:

1) анализ предметной области с целью определения задач, автоматизация решения которых на основе МК обещает наибольший эффект;

2) разработку алгоритма решения поставленной задачи (или комплекса задач);

3) собственно программирование, или, точнее, сопровождение разработки прикладных программ системными средствами поддержки проектирования.

Распределение трудозатрат в процентах по этим трем стадиям выглядит примерно так: 40-50-10. Это означает, что если первая стадия работы уже выполнена с участием специалиста по системному анализу, то есть, если задача уже поставлена, то наиболее сложной, слабо формализуемой (из-за тесной связанности с областью приложения данной программы) и трудоёмкой стадией работы является стадия анализа задачи, её инженерной интерпретации и разработки "функциональной спецификации" программы для формирования алгоритма решения поставленной задачи. Вся последующая работа по преобразованию алгоритма в машинные коды, то есть, создание прикладного программного обеспечения, представляет собой просто совокупность процессов трансляции. Эти процессы хорошо формализуемы, и их реализация опирается на уже существующие системные средства поддержки (трансляторы, редакторы, отладчики). Именно вследствие этого собственно программирование требует только около 10% общих трудо-затрат. Очевидно, что основную творческую нагрузку при разработке прикладных программ для МК-систем несёт не профессиональный прог-раммист, а непрограммирующий профессионал - специалист в данной области знаний. Если этот специалист овладеет основами программи-рования и станет программирующим профессионалом, то можно ожидать, что процесс формализации его профессиональных знаний будет протекать много результативнее, чем при "игре в испорченный телефон", то есть, при алгоритмизации прикладной задачи "тандемом".

Ориентация на разработку прикладных программ для МК-систем силами программирующих профессионалов получает распространение ещё и потому, что в условиях быстро дешевеющей памяти изменились стиль и технология разработки программ. Экономят теперь уже непамять МК-системы, а время разработчика программного обеспечения, тоесть, сокращают сроки разработки изделия. Вследствие этого прикладные программы, созданные программирующим профессионалом, с точки зрения профессионального программиста зачастую выглядят неуклюжими и неизящными. Но зато они обладают одним общим достоинством - они действительно работают в контроллерах, чего нельзя сказать о девяти из каждых десяти изящных программ, созданных профессиональным программистом, не могущим (по определению) быть профессионалом и в каждой конкретной предметной области знаний.

С учетом масштабов выпуска и перспектив применения средств микроконтроллерной техники выход из создавшегося положения видится в том, чтобы побудить специалистов, работающих в своих предметных областях знаний, взять дело разработки прикладного программного обеспечения МК-систем в свои руки полностью (при некоторой технической поддержке профессиональных программистов). Для этого нужны не очень значительные усилия и первоначальные затраты: надо прежде всего решиться взять всю полноту ответственности за программное обеспечение на свои плечи, надо овладеть одним из языков программирования и освоить "кухню" программной реализации ограниченного множества наиболее употребимых процедур и функций объекта автоматизации. Однако эта задача относительно легко решается с использованием метода декомпозиции (разбиение сложной функции на множество простых взаимосвязанных функций). К подобной постановке вопроса организации разработки прикладного программного обеспечения для МК-систем приводит и вполне очевидное соображение о том, что быстрый рост числа выпускаемых МК и областей их проблемных применения не может более сопровождаться соответствующим ростом числа программистов.

 


– Конец работы –

Эта тема принадлежит разделу:

Однокристальные микроконтроллеры ОМК позволяют существенно расширить интеллектуальные возможности различного рода устройств и систем

Однокристальные микроконтроллеры ОМК позволяют существенно расширить... Подавляющее число ОМК имеют традиционную Фон Неймановскую или Принстонскую архитектуру в которой команды и данные...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: МК-систем

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Формализация проектирования МК-систем и устройств
  1.1.1. Блочно-иерархический подход   При проектировании микроконтроллерных устройств (МКУ) или систем (МКС) можно использовать блочно-иерархический под

Уровни и аспекты проектирования МКС
  Уровни Аспекты Функциональ- ный Алгоритмичес- кий Конструкторс- кий Технологичес-

Типовые структуры МК-систем и устройств
  Типовая структура МК-системы управления показана на рис. 1.3 и состоит из объекта управления, микроконтроллера и аппаратуры их взаимной связи (АВС). Микроконтроллер путем п

Использование жесткой и программируемой логики
  Существует два принципиально разных подхода к проектированию цифровых устройств: использование принципа схемной логики или использование принципа программируемой логики. В

Проектируемых систем и устройств
  На системном и архитектурном уровнях проектирования МКС и МКУ всегда необходимо решать задачу выбора ОМК. В настоящее время выпускается большое количество различных типов ОМК такими

Особенности разработки аппаратурных средств МК-систем
  Применение однокристальных МК в устройствах управления объ-ектами привело к кардинальных изменениям в разработке аппаратурных средств устройств и систем. И дело здесь заключается в

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ И РЕЖИМЫ РАБОТЫ ОМК С RISC АРХИТЕКТУРОЙ
  2.1. Общие сведения об ОМК PIC16/17 и их классификация   В 1975 году фирма GI разработала периферийный контроллер (Peripheral Interface Contr

Однокристальные микроконтроллеры семейства PIC16C5X
2.2.1. Структурная организация микроконтроллеров PIC16C5X Особенности архитектуры и структурная схема. Структурная схема ОМК PIC16C5X показана на рис. 2.1. Основу структуры данного

FSR - Регистр косвенной адресации
RP1, RP0 – Биты 6 и 5 регистра FSR, соответственно   Рис. 2.6. Прямая и косвенная адресация   Существуют некоторые отличия при осущест

Окончание таблицы 2.7
  Мнемокод Название команды Цик лы Код команды (11-бит) Биты сос тоя- ния При- меча- ния

Особенности структурной организации ОМК PIC 16С71
Микроконтроллеры PIC 16С71 относятся к расширенному семейству и имею целый ряд отличий от МК базового семейства PIC 16С5Х главным 0из которого является наличие встроенного четырехканального анал

Обозначение выводов и их функциональное назначение
  PDIP, SOIC, CERDIP    

Организация памяти данных (ОЗУ)
  Память данных также как и в PIC 16С5Х имеет страничную организацию, но состоит всего из 2-х страниц (рис.3.3). Причем, страницы в различных модификациях данного МК имеют различные о

Описание специальных регистров PIC 16С71
  Адрес Имя Бит 7 Бит 6 Бит 5 Бит 4 Бит 3 Бит 2 Бит 1

Модуль таймера (TMRO-RTCC)
  Единственным отличием данного модуля от аналогичного в PIC 16С5Х является возможность формирования сигнала прерывания. Прерывание по RTCC вырабатывается тогда, когда происх

Регистр статуса (STATUS)
Отличается от аналогичного регистра PIC 16С5Х лишь тем, что вместо трех бит выбора страниц памяти программ РА2, РА1, РА0 в соответствующих разрядах 7,6 и 5 размещаются биты выбора страницы памят

Программный счетчик и организация памяти программ
Программный счетчик в PIC16C71 имеет ширину 13 бит и способен адресовать 8К х 14бит объема программной памяти. Однако, физически на кристалле PIC16C71/711 имеется только 1К х 14

Прерывания
  Прерывания в PIC16C71 могут быть от четырех источников: - внешнее прерывание с ножки RB0/INT, - прерывание от переполнения счетчика/таймера RTCC, - прерыв

Модуль аналого-цифрового преобразователя (АЦП)
  Модуль АЦП (рис. 3.10) содержит четыре входных аналоговых канала AIN3, AIN1, AIN2 и AIN3, мультиплексируемых на одну схему выборки/хранения и далее на АЦП. Опорное напряжение поступ

Состояние специальных регистров после сброса
  Адрес Имя Сброс по включению питания Сброс по MCLR и WDT Банк 0 00h

Регистр OPTION
  Регистр конфигурации предделителя и таймера (OPTION) доступен для чтения и записи и содержит различные управляющие биты, которые определяют конфигурацию предделителя, куда он подклю

Биты установки конфигурации
Кристалл PIC16C71 имеет пять битов конфигурации, которые хранятся в EPROM и устанавливаются на этапе программирования кристалла. Эти биты могут быть запрограммированы (читается как "0"

Режим пониженного энергопотребления
Вход в режим SLEEP осуществляется командой SLEEP. По этой команде, если WDT разрешен, то он сбрасывается и начинает счет времени, бит »в регистре статуса (f3) сбрасывается, бит

Система команд
Каждая команда PIC16C71 представляет собой 14‑разрядное слово, содержащее поле кода операции (OPCODE) и поле одного или более операндов, которые могут участвовать в этой команде. Формат ко

Особенности программирования
Разработка рабочих программ для микроконтроллеров PIC16C5X и PIC16C71 осуществляется по одной и той же методике с использованием одних и тех же инструментальных средств [7, 8, 10, 11]. Системы к

Особенности структурной организации PIC 16С84
  Структурная схема ОМК PIC 16С84 (16F84) приведена на рис.4.1. Главным отличием данного МК от PIC 16С71 является наличие электрически перепрограммируемой памяти данных-констант EEPRO

Обозначение выводов и их функциональное назначение
  Расположение и обозначение выводов ОМК PIC 16С84 полностью совпадает с PIC 16С71 за исключением того, что ножки RA0, RA1, RA2, RA3 в связи отсутствием АЦП представляют собой лишь дв

Долговременная память данных-констант EEPROM
Память данных-констант EEPROM позволяет прочитать и записать байт информации. При записи байта автоматически стирается предыдущее значение и записывается новое (стирание перед записью). Все эти

Описание специальных регистров PIC 16F84
  Адрес Имя Бит 7 Бит 6 Бит 5 Бит 4 Бит 3 Бит 2 Бит 1

Организация прерываний
  Прерывания в PIC 16С84 организованы точно также как и в PIC 16С71 (см. разд. 3.8). Но, вместо прерывания от АЦП (в связи с его отсутствием) введено прерывание по окончании записи да

Состояние специальных регистров после сброса
  Адрес Имя Сброс по включению питания Сброс по MCLR и WDT Банк 0 00h

МЕТКА ОПЕРАЦИЯ ОПЕРАНД(Ы) КОММЕНТАРИЙ
  Звенья (поля) могут отделяться друг от друга произвольным числом пробелов. Порядок и позиция полей важны. Так, метки должны начинаться в первом столбце. Операция (мнемоника команды)

Использование программы-транслятора MPASM
  5.5.1. Запуск транслятора   Для того, чтобы запустить транслятор необходимо выбрать курсором MPASM.EXE и нажать "Ввод". На экране появится ме

Отладка рабочих программ
  После получения объектоного кода рабочей программы неизбежно наступает этап отладки, то есть установления факта ее работоспособности, а также выявления (локализации) и устранения ош

Использование симулятора-отладчика MPSIM
  5.7.1. Последовательность действий при запуске   Данный симулятор позволяет промоделировать работу рабочей программы и проверить выполнение соответству

Назначение команд
После запуска MPSIM необходимо выбрать контролируемые регистры в области просмотра на экране монитора. Для этого можновоспользоваться следующими командами: AD - позволя

RS ; Перезагрузить процессор
Приведенный пример является стандартным и может быть использован в качестве INI-файла для вашей программы, адреса регистров для просмотра выберите соответственно своему приложению.

Назначение и основные функциональные возможности
Интегрированная среда разработки рабочих программ MPLAB 3.30 представляет собой набор программ, объединенных в единый пакет , который содержит: - редактор (Editor Only); - ассембл

Краткая характеристика основных программ
  6.2.1. Ассемблер MPASM   Универсальный макроассемблер MPASM - это символьный ассемблер, который поддерживает разработку рабочих программ для всех семей

Интерфейс пользователя и главное меню интегрированной среды MPLAB 3.30
  Интерфейс пользователя интегрированной среды MPLAB 3.30 представляет собой многоуровневую систему вложенных меню, позволяющих быстро и удобно задать нужный режим работы и сконфигури

Меню основного пакета программ.
  Меню основного пакета программ содержит следующие пункты (подменю): File, Project, Edit, Debug, Picmaster, Option. Каждый пункт содержит ряд команд, которые выполня

Меню File
Команды (опции) меню File позволяют разработчику просматривать тексты программ, загружать и редактировать их, сохранять на носителе и распечатывать их, переименовывать, а также выйти из оболочки

MPLAB 3.30
6.7.1. Постановка задачи и алгоритм ее решения   Возьмем для примера следующую, достаточно часто встречающуюся на практике, задачу,

ВВОД ИНФОРМАЦИИ С ДАТЧИКОВ И ФОРМИРОВАНИЕ СИГНАЛОВ УПРАВЛЕНИЯ
  В технических системах различного назначения события в объекте управления фиксируются с помощью разнообразных датчиков цифрового и аналогового типов. Наибольшее распростран

Импульсов заданной длительности.
  Пусть, например, необходимо с помощью микроконтроллера PIC16F84 осуществить опрос двоичного датчика и, в зависимости от его состояния, либо организовать процедуру «ожидан

Ввод информации с группы взаимосвязанных двоичных датчиков
7.2.1. Ввод байта состояния одного датчика   Пусть, например, необходимо ввести байт состояния датчика дискретных сигналов (Di), сравнить его с уставкой, хр

ПРЕОБРАЗОВАНИЕ ИНФОРМАЦИИ ИЗ ОДНОЙ ФОРМЫ ПРЕДСТАВЛЕНИЯ В ДРУГУЮ
  Довольно часто в микроконтроллерных устройствах возникает необходимость преобразования информации из одной формы представления в другую. Это связано с тем, что обработка данных в ми

Преобразование кодов из одной системы счисления в другую
  Преобразование кода из одной позиционной системы счисления в другую осуществляется делением исходного числа на основание новой системы счисления. При этом деление должно выполнятся

Статических сигналов
Рассмотрим пример, в котором необходимо ввести от 2-х независимых датчиков аналоговые сигналы постоянного тока (U1 и U2), выполнить сравнение их между собой и по результатам сравнения осуществит

ОТОБРАЖЕНИЕ ИНФОРМАЦИИ В МКУ.
Во многих случаях в микроконтроллерных устройствах требуется наличие только простой индикации типа ДА/НЕТ, ВКЛ/ВЫКЛ. Такая индикация реализуется на основе отдельных светодиодов. Для отобра

Изучение пакета MPLAB
  1. ЦЕЛЬ На примере микроконтроллера PIC16C56 выучить режимы работы портов ввода/вывода, способы и особенности их инициализации. Рассмотреть ввод/вывод дискретных сигналов.

Режимы работы таймера. Сторожевой таймер (WDT)
1. ЦЕЛЬ Выучить основные режимы функционирования таймера, способы и особенности его инициализации, варианты использования и настройки предыдущего делителя, функционирования сторожевого тай

Страничная организация памяти
  1. ЦЕЛЬ Выучить способы формирования временных интервалов разной длительности, организацию страничной памяти программ и данных.   2. ЗАДАНИЕ ПО ЛАБОР

Организация и использование памяти данных.
  1. ЦЕЛЬ Выучить страничную организацию памяти данных. Научиться использовать режим непрямой адресации ячейки памяти данных. Выучить организацию и способы доступа к енергоне

Собственные обработчики прерываний
  1. ЦЕЛЬ Выучить систему прерываний микроконтроллера PIC16F84, способы формирования прерываний, использования обработчиков нескольких прерываний.   2.

Формирование сигналов управления и индикации
  1. ЦЕЛЬ Приобрести навык составления функциональной схемы. Выучить способы формирования сигналов управления и индикации, научиться формировать звуковые и световые сигналы н

В мк семейства PIC16Cxx
  1. ЦЕЛЬ Выучить принцип работы аналого-цифрового преобразователя на примере микроконтроллера PIC16C71. Научиться вводить аналоговые сигналы. Рассмотреть способы вывода анал

Семейства PIC
Таблица А.1   Название Память программ RAM/ EE Fm I/O Таймер CCP/ PWM

B1. Описание команд PIC 12CXX и PIC 16C5X
  ADDWF Add Wand f Сложение W с f Синтаксис: ADDWF f,d Операнды: 0<=3<=1, [0,1] Операция: (W)+(f) -> (dest) Биты с

Пропустить команду, если бит равен нулю
Синтаксис: BTFSC f,b Операнды: 0<=31, 0<=Ь<=7 Операция: Пропустить, если f(b)=0. Биты состояния: Не изменяются. КОД: 0110 bbbf ffff Описание: Е

Пропустить команду, если бит равен единице
Синтаксис: BTFSS f,b Операнды: 0<=f<=31, 0<=b<=7 Операция: Пропустить, если f(b)=1. Биты состояния: Не изменяются. КОД: 0111 bbbf ffff Описа

Вызов подпрограммы
Синтаксис: CALL k Операнд: 0<=k<=255 Операция: (PC)+1->TOS, k->PC<7:0>, (STATUS<6:5>)->PC<10:9>, 0->PC<8> Биты состояния: Не изм

Сброс сторожевого таймера WDT
Синтаксис: CLRWDT Операнд: Нет. Операция: 00h->WDT, 0->WDT prescaler, 1->TO, 1->PD Биты состояния: ТО, PD Код: 0000 0000 0100 Описание: Кома

Инверсия регистра f
Синтаксис: COMF f,d Операнды: 0<=f<=31, [0,1] Операция: (f)->(dest) Биты состояния: Z КОД: 0010 01df ffff Описание: Содержимое регистра f инвер

Декремент регистра f
Синтаксис: DECF f,d Операнды: 0<=f<=31, [0,1] Операция: (f) - 1->(dest) Биты состояния: Z Код: 0000 11df ffff Описание: Регистр f уменьшается н

Декремент f, пропустить команду, если 0
Синтаксис: DECFSZ f,d Операнды: 0<=f<=31, [0,1 ] Операция: (f)—1->(dest); пропустить, если (dest)=0 Биты состояния: Не изменяются. КОД: 0010 11df ffff

Переход по адресу
Синтаксис: GOTO k Операнд: 0<=k<=511 Операция: k->PC<8:0>, (STATUS<6:5>)->PC<8:9> Биты состояния: Не изменяются. Код: 101k kkkk kkk

Инкремент регистра f
Синтаксис: INCF f,d Операнды: 0<=f<=31, [0,1] Операция: (f)+1->(dest) Биты состояния: Z Код: 0010 10df ffff Описание: Регистр f увеличивается н

Инкремент f, пропустить команду, если 0
Синтаксис: INCFSZ f,d Операнды: 0<=f<=31, [0,1] Операция: (f)+1->(dest); пропустить, если (dest)=0 Биты состояния: Не изменяются. КОД: 0011 11df ffff

Логическое ИЛИ W и f
Синтаксис: IORWF f,d Операнды: 0<=f<=31, [0,1] Операция: (W).OR.(f)->(dest) Биты состояния: Z КОД: 0001 00df ffff Описание: Содержимое регистра

Пересылка регистра f
Синтаксис: MOVF f,d Операнды: 0<=f<=31, [0,1] Операция: (f)->(dest) Биты состояния: Z КОД: 0010 00df ffff Описание: Содержимое регистра f перес

Холостая команда
Синтаксис: NOP Операнд: Нет. Операция: Нет. Биты состояния: Не изменяются Код: 0000 0000 0000 Описание: Нет операции. Циклов: 1 Пример

Сдвиг f влево через перенос
Синтаксис: RLF f,d Операнды: 0<=f<=31, [0,1] Операция: f<n>->d<n+1>, f<7>->C, C->d<0> Биты состояния: С КОД: 0011 01df fff

Сдвиг f вправо через перенос
Синтаксис: RRF f,d Операнды: 0<=f<=31, [0,1] Операция: t<n>->d<n-1>, f<0>->C, C->d<7> Биты состояния: С Код: 001111df ffff

Переход в режим SLEEP
Синтаксис: SLEEP Операнд: Нет Операция: 00h->WDT, 0->WDT prescaler, 1->TO, 0->PD Биты состояния: ТО, PD Код: 0000 0000 0011 Описание: Команд

Вычитание W из f
Синтаксис: SUBWF f,d Операнды: 0<=f<=31, [0,1] Операция: (f) - (W)->(dest) Биты состояния: С, DC, Z КОД: 0000 10df ffff Описание: Содержимое ре

Обмен тетрад в f
Синтаксис: SWAPF f,d Операнды: 0<=f<=31, [0,1] Операция: f<0:3>->d<4:7>, f<4:7>->d<0:3> Биты состояния: Не изменяются. Код: 0

Загрузка регистра
Синтаксис: TRIS f Операнд: 5<=f<=7 Операция: (W)->TRIS register f Биты состояния: Не изменяются. Код: 0000 0000 0fff Описание: Содержимое регис

Исключающее ИЛИ константы и W
Синтаксис: XORLW k Операнд: 0<=k<=255 Операция: (W).XOR.(k)->W Биты состояния: Z Код: 1111 kkkk kkkk Описание: Содержимое регистра W поразрядно

B.2.Описание дополнительных команд для семейства PIC 16СХХ
  RETFIE Return from Interrupt Возврат из прерывания Синтаксис: [label] RETFIE Операн

Контрольные задачи
1. Предложите микроконтроллерное устройство позволяющее осуществить опрос двоичного датчика и, в зависимости от его состояния, либо организовать процедуру «ожидания события», либо сформировать и вы

И их отличия от микроконтроллеров PIC 16CХХ
  Семейство однокристальных микроконтроллеров PIC 12CХХ состоит из самых простых МК с RISC архитектурой. Все микроконтроллеры данного семейства имеют только 33 12-ти разрядных команды

F2. Отличия ОМК PIC 17CХХ от PIC 16CХХ.
  Микроконтроллеры PIC 12C67X и PIC 12F68X представляют собой упрощенные модификации PIC 16C71 и PIC 16F84 соответственно, но без механизма прерываний. Так микроконтроллеры PIC 12C6X

G2. Совместимость PIC 17CXX и PIC 16CXX.
Чтобы преобразовать текст программ PIC 16CXX для использования в PIC 17CXX, нужно выполнить следующее: 1. Удалить все команды OPTION и TRIS, заменив их эквивалентными. 2. Разделит

ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ТЕХНИЧЕСКИХ СИСТЕМ
И УСТРОЙСТВ НА МИКРОКОНТРОЛЛЕРАХ…………………………… 1.1. Формализация проектирования МК-систем и устройств………………… 1.1.1. Блочно-иерархический подход……………………………………………

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ И РЕЖИМЫ РАБОТЫ ОМК С RISC-АРХИТЕКТУРОЙ
2.1. Общие сведения об ОМК PIC16/17 и их классификация…………………… 2.2. Однокристальные микроконтроллеры семейства PIC16C5X………………. 2.2.1. Структурная организация микроконтроллеров PIC

ДЛЯ ОМК PIC
5.1. Правила записи программ на языке Ассемблера . . . . . . . . . . . . . 5.2. Структура рабочей программы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3. Пример н

ИНТЕГРИРОВАННАЯ СРЕДА РАЗРАБОТКИ РАБОЧИХ ПРОГРАММ MPLAB 3.30 ДЛЯ ОТЛАДКИ ОМК PIC
6.1. Назначение и функциональные возможности . . . . . . . . . . . . . . . . . 6.2. Краткая характеристика основных программ . . . . . . . . . . . . . . . . . 6.2.1. Ассемблер MPA

Система прерываний МК PIC16F84. Собственные обработчики прерываний
10.6. Формирование сигналов управления и индикации 10.7. Ввод и вывод аналоговых сигналов в МК семейства pic16cxx   Приложение А. Сравнительные характеристики ОТР ми

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги