Динамический расчет системы методом перемещений. - раздел Строительство, Устойчивость круговой бесшарнирной арки под действием радиальной нагрузки.
Порядок Расчета:
1. Анализируем Схему И Выбираем Осн...
Порядок расчета:
1. Анализируем схему и выбираем основную систему.
2. Строится изгибающий момент.
Для заданной системы основная получилась путем введения связей по направлению неизвестных перемещений z1, z2 … zn cсоответствующих масс m1, m2 …mn. число степеней свободы упругой системы определяется числом возможных независимых смещений. Получаем систему уравнений: (1)
Частное решение системы:
(2)
A1, An – амплитуды колебаний соотв. масс, φ0 – нач. фаза колебаний.
Возьмем вторую производную по времени t:
(3)
Подставляем из ур-я (3) и (2)в (1):
Перобразовываем:
1/ω2=λ
Если А1=А2=…=Аn=0 (сист-ма наход. в покое) Если А1≠А2≠Аn, тогда когда определитель из коэф-ов при амплитудах=0.
Вековое ур-ие с n-степенью свободы.
Раскрываем полученный определитель. Если вековое уравнение 2-го или 3-го порядка его решение достаточно просто, но при дальнейшем увеличении порядка решение становится затруднительным. 35. Устойчивость кругового кольца при гидростатич. давлении.
До потери устойчивости все сечения кольца испытывают только сжатие и продольная сила равна N=qR. При достижении нагрузкой критического значения может произойти потеря устойчивости и кольцо примет слегка изогнутую форму, к-ая будет формой равновесия. Рассмотрим изогнутую равновесную форму с двумя осями симметрии. ДУ изгиба бруса кругового очертания: . Изгибающий момент в точке А΄ равен M0=qRω0, а изгиб. момент в произвольной точке kM=qRω. Подставляя в ДУ и после небольшого преобразования. обозначив через получим общее решение этого однородного диф. уравнения в след. виде.
Граничные условия:
1) при θ=0 откуда B=0;
2) при т.к. ω не обращается тождественно в ноль, следовательно, что дает минимальное значение nmin=2. Таким образом, минимальная критическая нагрузка, соответ. данной форме потери устойчивости, определяется из условия .
Расчет двухшарнирной арки с затяжкой
Построим эпюры изгибающих моментов в сечении арки. Влиянием продольной и поперечной силы в арке пренебрегаем. Сечен
Расчет рам на устойчивость методом перемещений. Основные допущения
Основная система при расчете рамы на устойчивость выбирается так же как и на прочность. Но при расчете на устойчивость внешняя нагрузка всегда приложена в узлах. Канонические уравнения как и в мето
Потеря устойчивости I рода
При потери устойчивости формы нарушается условие равновесия между внешними и внутренними силами, соответствующими первоначальному виду деформации.. Потерю устойчивости, связанную с разветвлением фо
Определение перемещений в стат-ки опред. сист-ах от осадки опор.
Перемещения от случайных осадок опор. Осадки опор могут быть случайными вызванными просадкой грунта, размывом, оползнем и др. причинами). При отсутствии нагрузки на сооружение осадки могут возникну
Метод исследования устойчивости упругих систем.
В задачах устойчивости используют энергетический и статический метод (есть еще динамический, но он редко применяется). Статический метод – заключается в составлении и интегрировании ДУ равно
Расчет параболических арок.
Аналитический расчет арок: для арки с опорами на одном уровне опорные реакции раскладываются вертикальные и горизонтальные – распор H.
Вертикальные составляющие VA=VB.
Расчет рам смешанным способом.
При смешанном методе расчета часть неизвестных представляет собой усилия – силы, моменты (как при расчете методом сил), а другая часть – перемещения – повороты, поступательные смещения (как при рас
Динамический расчет системы
Этот расчет можно производить используя как МС так и МП
Основ сист задается путем наложения связей с однов
Основные формы потери устойчивости
При потере устойчивости формы наруш условия равновесия между внеш и внутр силами, соответст первоначальному виду деформации. Потерю уст, связанную с разветвлением форм равновесия, назыв потерей уст
Степень свободы в динамике сооружений.
Степень свободы – это число независимых координат, определяющих положение масс движ вместе с сист всевозмож упругих и упругопластич перемещениях в сист-х. Чмсло степеней свободы удобно определять к
Вынужденные колебания системы с конечным числом степеней свободы
Число возмож форм колеб упругой сист = числу степеней свободы. Каждой форме колеб соотв своя частота. Число степ свободы упругой сист опред числом возможных независимых смещений. Для того чтобы уст
Матричная форма расчета арок
Трехшарнирные арки в матр-ой форме проще рассчитывать с использованием преобразрования базиса нагр-ки. Для трехшарнирной арки с пароболическим очертанием оси
В этом месте пробел в шпоре
Для состав-я матрицы рассчитываем арку на самоуравнев-ю нагр-ку. Эпюры изгиб-х моментов будут локальными с единич-ой ординато
Комбинированный способ расчета рам.
Комбинир способ прим как для симметричных так и для не симметричных рам. В этом случае один из методов расчета(напр МС) яв-ся основным, а другой(МП) – вспомогательный, или наоборот. Если в кач-ве о
Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Новости и инфо для студентов