Свободные колебания системы с одной степенью свободы. Вывод дифференциального уравнения.
Свободные колебания системы с одной степенью свободы. Вывод дифференциального уравнения. - раздел Строительство, Устойчивость круговой бесшарнирной арки под действием радиальной нагрузки. Самая Простая Задача Колебания С Одной Степенью Свободы Являются Колебания Не...
Самая простая задача колебания с одной степенью свободы являются колебания невесомого стержня с приложенной массой.
у – отклонения от статического равновесия сил.
; ; ;
K – сила, сообщающая стержню единичное удлинение.
Ky – реакция, возникающая в стержне при отклонении массы от положения статического равновесия.
Проекция всех сил на ось y: ; - диф. Однород. Ур. собственного незатух. колебания системы.
;
- уравнение гармонических колебаний.
А1и А2– постоянные величины, которые необходимо определить из граничных условий.
1)при t=0 – y(t)=yo, A1=yo
2)t=0; ; ;
- ур-ие собств. незатух. колебательных движений.
- ур-ие колебательных движений
*
Из ур-ия * определяем:
При t=0 из уравнения колебательных движений получаем: ;
Расчет двухшарнирной арки с затяжкой
Построим эпюры изгибающих моментов в сечении арки. Влиянием продольной и поперечной силы в арке пренебрегаем. Сечен
Расчет рам на устойчивость методом перемещений. Основные допущения
Основная система при расчете рамы на устойчивость выбирается так же как и на прочность. Но при расчете на устойчивость внешняя нагрузка всегда приложена в узлах. Канонические уравнения как и в мето
Потеря устойчивости I рода
При потери устойчивости формы нарушается условие равновесия между внешними и внутренними силами, соответствующими первоначальному виду деформации.. Потерю устойчивости, связанную с разветвлением фо
Определение перемещений в стат-ки опред. сист-ах от осадки опор.
Перемещения от случайных осадок опор. Осадки опор могут быть случайными вызванными просадкой грунта, размывом, оползнем и др. причинами). При отсутствии нагрузки на сооружение осадки могут возникну
Метод исследования устойчивости упругих систем.
В задачах устойчивости используют энергетический и статический метод (есть еще динамический, но он редко применяется). Статический метод – заключается в составлении и интегрировании ДУ равно
Расчет параболических арок.
Аналитический расчет арок: для арки с опорами на одном уровне опорные реакции раскладываются вертикальные и горизонтальные – распор H.
Вертикальные составляющие VA=VB.
Расчет рам смешанным способом.
При смешанном методе расчета часть неизвестных представляет собой усилия – силы, моменты (как при расчете методом сил), а другая часть – перемещения – повороты, поступательные смещения (как при рас
Динамический расчет системы
Этот расчет можно производить используя как МС так и МП
Основ сист задается путем наложения связей с однов
Основные формы потери устойчивости
При потере устойчивости формы наруш условия равновесия между внеш и внутр силами, соответст первоначальному виду деформации. Потерю уст, связанную с разветвлением форм равновесия, назыв потерей уст
Степень свободы в динамике сооружений.
Степень свободы – это число независимых координат, определяющих положение масс движ вместе с сист всевозмож упругих и упругопластич перемещениях в сист-х. Чмсло степеней свободы удобно определять к
Вынужденные колебания системы с конечным числом степеней свободы
Число возмож форм колеб упругой сист = числу степеней свободы. Каждой форме колеб соотв своя частота. Число степ свободы упругой сист опред числом возможных независимых смещений. Для того чтобы уст
Матричная форма расчета арок
Трехшарнирные арки в матр-ой форме проще рассчитывать с использованием преобразрования базиса нагр-ки. Для трехшарнирной арки с пароболическим очертанием оси
В этом месте пробел в шпоре
Для состав-я матрицы рассчитываем арку на самоуравнев-ю нагр-ку. Эпюры изгиб-х моментов будут локальными с единич-ой ординато
Комбинированный способ расчета рам.
Комбинир способ прим как для симметричных так и для не симметричных рам. В этом случае один из методов расчета(напр МС) яв-ся основным, а другой(МП) – вспомогательный, или наоборот. Если в кач-ве о
Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Новости и инфо для студентов