Формализация системы в виде агрегата - раздел Философия, МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ СЛОЖНЫХ СИСТЕМ При Выборе Той Или Иной Схемы Формализации Системы Всегда Возникает Противоре...
При выборе той или иной схемы формализации системы всегда возникает противоречивая задача – получить как можно более простую модель и обеспечить требуемую точность. При таком подходе различные системы могут быть представлены в виде различных достаточно простых математических схем.
Для анализа и синтеза структуры сложной системы с разнородными элементами (детерминированными, стохастическими, непрерывными, дискретными) необходима унификация математического описания состояний и операторов для всех элементов системы на основе единого формального языка описания системы.
Унифицированной математической моделью разнородных элементов системы является агрегат, который позволяет на едином языке представлять описания детерминированных и стохастических объектов, функционирующих как непрерывно, так и дискретно.
Понятие агрегата определяется на основании единого подхода к формализации процесса функционирования системы:
- состояние системы в данный момент времени определяется предыдущими состояниями и входными сигналами, поступившими в данный момент времени и ранее;
- выходной сигнал в данный момент времени определяется состояниями системы и входными сигналами, относящимся к данному и предшествующим состояниям.
С позиций моделирования агрегат выступает как универсальный переработчик информации: за конечный интервал времени он воспринимает конечное число входных сигналов и выдает конечное число выходных сигналов. Из входных сигналов могут быть выделены управляющие сигналы.
Формальная интерпретация каждого положения.
Входные сигналы. Агрегат имеет входные контакты, на которые в моменты времени tj, j = 1, 2, . . . ; tj+1 tj, поступают входные сигналы. Входной сигнал х является элементом некоторого множества Х: х Є Х. Входной сигнал является вектором, размерность которого равна числу входных контактов, и на каждый контакт поступает "своя" координата входного сигнала. Входной сигнал может быть представлен конечным набором элементарных сигналов х1(t), . . ., хn(t), хi Є Хi, i = 1, n одновременно возникающих на входе агрегата.
На другие особые контакты системы поступают управляющие сигналы в моменты времени τi. Управляющий сигнал g является элементом множества Г: g Є Г.
За конечный интервал времени в агрегат поступает конечное число входных и управляющих сигналов. Совокупность входных сигналов, расположенных в порядке их поступления называется входным сообщением, или (х)-сообщением, соответственно управляющих сигналов - управляющим сообщением или (g)-сообщением.
Выходной сигнал агрегата у является элементом некоторого множества У и определяется по состояниям агрегата z (t) при помощи оператора G. За конечный интервал времени оператор выдает конечное число выходных сигналов. В общем случае оператор является случайным оператором.
Совокупность выходных сигналов, упорядоченная относительно времени выдачи, называется выходным сообщением или (у)-сообщением.
Состояния системы. В каждый момент времен t Є (0, T), в который функционирует система, агрегат находится в одном из возможных состояний. В общем случае множество Т может быть непрерывным, дискретным или дискретно-непрерывным.
К системам, функционирующим в дискретном времени относятся вычислительные устройства. К системам, функционирующим в непрерывном времени относятся механические, электрические системы, системы автоматического управления непрерывными объектами. Дискретно-непрерывный характер имеют иерархические системы автоматизированного управления технологическими процессами: на нижних уровнях управление может рассматриваться в непрерывном времени, на более высоких – в дискретном.
Функционирование системы во времени рассматривается как процесс перехода ее из состояния в состояние: состояние системы изменяется как функция времени z (t), называемая фазовой траекторией.
Функции z (t) (или их вероятностные характеристики) могут зависеть от ряда параметров αm, m = 1, 2, . . . , m*, α Є А.
В общем случае последовательности вида (tj, хj) оказываются реализациями случайных последовательностей (θj, Xj) с законом распределения L [θ, X], последовательности вида (tj, gi) - реализациями случайных последовательностей (θi, λi) с законом распределения L [θi, λi]. Функции z (t) представляют собой реализации случайных функций Z (t) с совокупностью многомерных законов распределения L[Z (t)].
Состояние системы может определяться набором действительных чисел. Например, положение самолета в данный момент времени можно описать вектором фазовых координат (z1, z2, z3), где z1– наклонная дальность, z2 - азимут, z3- угол места.
В начальный момент времени t0состояния z имеют значения, равные z0(в общем случае задаются законом распределения L0[Z (t0)]).
Состояния агрегата z (t) для произвольного момента времени t > t0определяются по предыдущим состояниям оператором перехода Н:
z (t) = Н [z (t0), t].
Если оператор случайный, это означает, что данному z (t) ставится в соответствие в общем случае не одно определенное z (t), а множество значений z (t) с некоторым законом распределения, зависящим от вида оператора Н. Конкретное значение z (t) определяется как реализация в соответствии с этим законом распределения.
Вид оператора перехода Н зависит от того, содержит ли рассматриваемый интервал времени моменты так называемых особых состояний агрегата или не содержит. Под особыми состояниями агрегата будем понимать его состояния в моменты получения входного либо управляющего сигналов или выдачи выходного сигнала. Все остальные состояния будем называть неособыми.
Из особых состояний агрегат может переходить в новое состояние скачком.
Наряду с z (t) вводится состояние z (t + 0), в которое агрегат переходит за малый интервал времени. Будем считать, что момент (t + 0) для любого t1 > t принадлежит полуинтервалу (t, t1].
Принятые обозначения для сообщений, состоящих из сигналов, поступающих в агрегат в течение полуинтервала времени (t1, t2]: входное сообщение обозначается как (x]t1t2, управляющее сообщение – как (g]t1t2.
Для любого полуинтервала времени (t1, t2] можно построить совокупность входных и управляющих сигналов, упорядоченную относительно моментов их поступления в агрегат - (х, g)-сообщения - (x, g]t1t2.
Пусть t'n – момент поступления в агрегат входного сигнала х'n, тогда
z (t'n + 0) = V'[t'n, z (t'n), х'n, g (t'n), α],
где g (t'n) – последний управляющий сигнал, поступивший в агрегат в момент времени t < t'n, α- параметр.
Если t''n – момент поступления в агрегат управляющего сигнала g''n, то
z (t''n + 0) = V''[t''n, z (t''n), g''(t''n), α].
Если в момент tn в агрегат поступает сигнал (хn, gn) ∈Х х Г, то состояние агрегата изменяется в два этапа: сначала в соответствии с оператором V'', а затем – с оператором V':
z (tn + 0 + 0) = V'{tn, V''[tn, z (tn), gn, α], хn, gn, α}.
Если полуинтервал (tn, tn+1] не содержит ни одного момента поступления сигналов, то для t ∈ (tn, tn+1]
z (t) = U [t, tn, z (t + 0), α].
Во множестве состояний Z определяется подмножество ZY, зависящее в общем случае от g и α, такое, что, если для данного момента времени t* состояние z (t') ∈ZY при t* - ε< t' < t*, где ε> 0 – достаточно малое число, а z (t*) ∈ZY, то t* является моментом выдачи выходного сигнала
y = G'' [t*, z (t*), g (t*), α].
Подмножество ZY часто обозначается ZY(g, α), подчеркивая этим возможность его изменения в зависимости от g и α.
Процесс функционирования агрегата, таким образом, состоит в последовательной смене его состояния в соответствии с приходящими сигналами, которые упорядочиваются в зависимости от моментов их возникновения.
Агрегаты могут служить основой для построения достаточно сложных систем.
Системность... Системные идеи лежат в основе деятельности человечества с начала его... Необходимость решения специфических проблем связанных с возникновением и развитием больших и сложных систем вызвала...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:
Формализация системы в виде агрегата
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Определение понятия системы
Определение понятия "модель системы" предполагает, прежде всего, определение понятия "система".
Определение понятия системы – это тоже модель (лингвистическая
Внешняя среда
Внешняя среда -набор существующих в пространстве и во времени факторов, которые оказывают действие на систему и которые испытывают влияние со стороны системы.
Объекты,
Функции системы
Функции системы –действия компонентов системы (преобразования входов в выходы), необходимые для выполнения системой своих задач, обусловленных целью системы (интегративным свой
Системный подход
В основе системного подхода лежит стремление изучить объект (систему, явление, процесс) как нечто целостное и организованное, во всей полноте и многообразии связей – ориентирует на рассмотре
Развитие искусственной системы и ее жизненный цикл
В системе как элементе системы более высокого уровня могут накапливаться противоречия (проблемы), для разрешения которых система должна иметь новые функциональные свойства –
Целевой характер моделирования
Система может иметь практически необозримое количество сущностей (свойств), создание модели всей системы нереально – не существует модели «вообще».
Таким образом, моделирование имеет це
Процесс моделирования
Как разделить модель на подмодели, как построить иерархию моделей для исследования элементов (декомпозиция) и как их потом объединить для исследования системы в целом, чтобы объяснить целое через ч
Цели математического моделирования
Создание модели всей системы нереально – не существует модели «вообще».
Из этого следует множественность моделей одного объекта: для каждой цели требуется своя модель одно
Анализ чувствительности модели
При построении модели параметров и предположения могут быть приняты с некоторой степенью неопределенности, кроме того, параметры могут изменяться в зависимости от внешних условий и во времени. Чувс
Описание внешних воздействий
Внешние воздействия - совокупность факторов, воздействующих на систему и оказывающих влияние на эффективность ее функционирования.
Модель внешних воздействий должна обладать следующими осн
Декомпозиция системы
Система представляется набором моделей, отображающих ее поведение на различных уровнях декомпозиции (стратах). Каждый уровень учитывает присущие ему свойства, переменные и зависимости.
Дек
Подготовка исходных данных для математической модели
Исходные данные для разработки математической модели содержат выявленные законы функционирования системы в виде операторов, параметры и переменные модели, условные обозначения, классификацию исходн
Модель состава и структуры системы
Модель состава
Модель состава – список элементов системы. Сложность построения модели состава состоит в ее неоднозначности. Это же относится и к границам
Виды структур
В основе исследования структуры лежит ее классификация. Принципы построения и вид модели структуры системы зависят от типа системы и целей исследований.
При моделировании систем вообще и,
Установление функциональных зависимостей
После перехода от описания моделируемой системы к ее модели, построенной по блочному принципу, необходимо построить математические модели процессов, происходящих в различных блоках.
Исходн
Функционально стоимостной анализ.
Под функционально стоимостным анализом понимают метод системного анализа функций объекта (технологического процесса, производства, системы управления), направленный на поиск технико-экономических р
Пути уменьшения неопределенностей
Неопределенность уменьшается при разработке и анализе альтернативных вариантов, дополнительном анализе неопределенных факторов (сбор и обработка недостающих исходных данных, выявление среди множест
Формализация системы в виде автомата
Технические устройства дискретного действия для переработки информации лежат в основе вычислительных машин, автоматических устройств для управления объектами в системах регулирования и управления и
Моделирование процесса функционирования агрегата
Процесс функционирования агрегата состоит из скачков состояния в моменты поступления входных сигналов и выдачи выходных сигналов и изменений состояния между этими моментами.
Цель моделиров
Моделирование агрегативных систем
Агрегативные системы (А-системы) - класс сложных систем, обладающий следующим свойством: существует такое (в общем случае неоднозначное) расчленение системы на элементы, при котором к
Модель сопряжения элементов
Математическая модель сложной системы помимо формального описания элементов обязательно включает формальные описания взаимодействия элементов – модель сопряжения.
В модели сопряжения эл
Законы Ньютона.
Рассмотрим систему, модель которой может быть представлена как материальная точка, система материальных точек (механическая система).
Материальная точка - тело, размеры и форма которого не
Закон сохранения импульса.
Количество движения (импульс) материальной точки Кi = mivi .Это векторная величина, его направление совпадает с направлением скорости. Количество движения (импульс) системы:
К =
Работа, энергия, мощность
Силы служат причиной либо ускорения тела (динамическое действие), либо изменения его формы (статическое действие).
Если сила перемещает тело на некоторое расстояние, то она совершает над т
Работа против силы тяжести.
Если тело движется в направлении действия силы тяжести, то над телом совершается работа A = G h или Aт = mg h.
Чтобы поднять тело (увеличить расстояние от ц
Работа, затрачиваемая на ускорение.
Если под действием постоянной силы Fуск тело равномерно ускоренно перемещается на расстояние s, то над ним совершается работа Aуск = Fуск s
Работа против сил трения.
Движущееся тело теряет энергию из-за наличия трения, которое действует на поверхности соприкосновения тел и и затрудняет их перемещение относительно друг друга.
Динамика поступательного движения.
Основной закон поступательного движения: производная по времени от количества движения К материальной точки или системы точек относительно неподвижной (инерциальной) системы
Тело, брошено под углом к горизонту.
Как и в случае горизонтально брошенного тела, тело движется, в результате комбинации двух движений: равномерного прямолинейного движения под углом к горизонту и свободного падения в вертикальном на
Движение тела переменной массы.
Дифференциальное уравнение поступательного движения твердого тела, масса которого зависит от времени, имеет вид
Модель колебательного процесса
Колебаниями или колебательным движением называется движение (изменение состояния), обладающее повторяемостью во времени - процесс изменения параметров системы с многократным чередованием их
Модель консервативной системы.
Рассеяние (диссипация) энергии происходит в связи с наличием того или иного вида трения (механическая энергия с течением времени уменьшается за счет преобразования в другие виды энергии, например,
Электрическая подсистема.
Электрическая модель является наиболее и универсальной для описания явлений и процессов различной природы.
Типовыми простейшими элементами электрической подсистемы являются резистор с элек
Модели элементов гидравлических систем
Технические системы, в которых происходит перемещение несжимаемой жидкости, принято называть гидравлическими. Зарубин стр. 110
Участок трубопровода.
По
Модели элементов пневматических систем
Под пневматическими понимают технические системы, в которых рабочей средой является воздух или газ. Рабочая среда, в отличие от газа является сжимаемой: ее плотность r существенно зависит от
Выбор средств доставки грузов.
Имеется m грузообразующих пунктов с объемами грузов аi . Имеется n средств доставки грузов (вид
Экономическая интерпретация задач линейного программирования.
Предприятие располагает определенными, ограниченными производственными мощностями - активными средствами (станки, сырье, рабочая сила, энергия и т.д.). Для изготовления различных видов изделий испо
Перевозки взаимозаменяемых продуктов
Известны объемы и потребности продукции каждого вида. Если продукты, подлежащие перевозке, качественно совершенно различны (уголь, цемент, сахар), так что ни один из них не может быть использован в
Перевозка неоднородного продукта на разнородном транспорте.
Для обеспечения перевозок может быть использовано s автохозяйств, в каждом из которых r типов автомашин. Машины разных типов, обладая различными эксплуатационными характеристиками и р
Основные определения
Строгий подход к термину «управление» требует четкого ответа на вопрос, как и за счет чего может быть выполнена цель управления.
Основная особенность управления - целенаправленность
Формальная запись системы с управлением
Основная особенность управляемых систем – в системе существуют свободные функции, которыми может распорядиться субъект (устройство, исследователь, лицо, принимающее решение) в своих интересах.
Модели систем автоматического управления
Система автоматического управления стремится сохранить в допустимых пределах отклонения (рассогласования) ошибки между требуемыми и действительными значениями управляемых переменных при помо
Устойчивость движения систем
Система управления постоянно подвергается возмущениям, отклоняющим ее от заданного закона движения. Действие возмущения сопровождается восстанавливающим действием регулятора. В системе возни
Определение программного движения и управление движением
Потребности ракетной техники привели к совершенно новым задачам, поскольку кратковременное движение ракеты рассматривается как единый переходный процесс. Здесь возникла еще одна задача – опт
Модели автоматизированных систем управления
Всякая система управления с точки зрения ее функционирования решает три основные задачи: сбор и передача информации об управляемом объекте, переработка информации, выдача управляющих воздействий на
Формирование структуры системы
Структура формируется на основании сравнительного анализа альтернативных вариантов системы, обеспечивающих решение проблемы с учетом внешней среды и неопределенностей будущего функционирования.
Выбор основных проектных параметров системы
Формирование технического облика системы предполагает выбор рациональных значений основных проектных параметров системы, исходя из ее максимальной эффективности в принятых условиях применения.
Современное состояние САПР
Современное состояние САПР уже позволяет решать замкнутые задачи – реализовать сквозной процесс, включающий несколько этапов: анализ требований к изделию, разработка трехмерной модели изделия (в ря
Направления разработки проектной составляющей САПР
Направления разработки проектной составляющей САПР должны соответствовать ключевым направлениям развития проектируемых технических систем: прежде всего разрабатываются те САПР, внедрение которых в
Предпроектные исследования
Проектирование системы начинается с предпроектных исследований, в результате которых определяются цели системы, объем работ, вырабатываются критерии успешности проекта, оцениваются риски. В результ
Постановка задачи
Стадия постановки задачи включает: проведение системно-аналитического обследования и выработка концепции системы, разработка технического задания на проект.
Системно-аналитическое обсле
Проектирование системы
На стадии проектирования на основе анализа предметной области и требований к системе, сформулированных в ТЗ, разрабатываются основные архитектурные решения.
Архитектура процессов –
Архитектура программного обеспечения
Система состоит из двух видов программного обеспечения – общего и специального.
Общее программное обеспечение:
- программное обеспечение сетевого доступа к приложениям и БД
Организационное обеспечение системы
Сложность проектирования организационного обеспечения лежит в социальной, а не в технической сфере – задача психологов и психоаналитиков. Внедрение новых технологий обеспечивает неограниченный прям
Реализация и внедрение системы
Разработчики производят итеративное построение реальной системы на основе полученных в предыдущей фазе моделей, а также требований нефункционального характера. Конечные пользователи на этой фазе оц
Оценка конкурентоспособности
Оценку конкурентов рассматриваемой системы проводится в два этапа: выявление возможных конкурентов и сравнительный анализ конкурентов.
На первом этапе составляется общий список конкурентов
Метод определения чистой текущей стоимости.
Метод оценки приемлемости инвестиций на основе критерия NPV является базовым в современном инвестиционном анализе и широко применяется на практике.
Чистая текущая стоимость - NPV
Метод расчета рентабельности инвестиций
Рентабельность инвестиций - PI (profitability index) - это показатель, позволяющий определить, в какой мере возрастет стоимость фирмы (богатство инвестора) в расчете на 1 доллар (рубль, грив
Метод расчета внутренней нормы прибыли
Внутренняя норма прибыли (внутренний коэффициент окупаемости инвестиций, поверочный дисконт) - IRR (internal rate of return) - представляет собой уровень доходности средств, направленных на
Расчет периода окупаемости инвестиций
Период окупаемости инвестиций РР (payback period) - это срок, который необходим для возмещения суммы первоначальных инвестиций (рассчитанный без дисконтирования).
Если величины дене
Задачи управления проектами
Успешность деятельности предприятия зависит от непрерывной последовательности управленческих решений по инвестиции в проект и управление проектом. Эти решения базируются на анализе внешней среды кА
Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Новости и инфо для студентов