рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Модели элементов пневматических систем

Модели элементов пневматических систем - раздел Философия, МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ СЛОЖНЫХ СИСТЕМ Под Пневматическими Понимают Технические Системы, В Которых Рабочей Средой Яв...

Под пневматическими понимают технические системы, в которых рабочей средой является воздух или газ. Рабочая среда, в отличие от газа является сжимаемой: ее плотность r существенно зависит от давления р.

Газ называют совершенным, если для него справедливо уравнение Клайперона-Менделеева p = rRT, где T – температура газа, R - удельная газовая постоянная для данного газа. Тогда r = p/RT, масса m = rV = pV/RT.

В пневматической системе, как и в гидравлической, величиной, имеющей смысл потенциала, является разность (перепад) ∆р давлений. В качестве величины, характеризующей перенос рабочей среды, вместо объемного расхода рассматривается расход массы газа dm/dt.

При установившемся ламинарном течении по трубопроводу вязкого газа с постоянным расходом m' = ∆р V/RT или ∆р = m'Rп, Rп = const. Это линейное соотношение аналогично закону Ома ∆U = IR.

Для сосуда с фиксированным объемом V, газ выпускается (температура и плотность считаются постоянными) - масса газа изменяется во времени t. Тогда при T = T0 получим соотношение

m' = dm/dt = V/RT0 dp/dt = m0/p0 dp/dt = Cпdp/dt.

Это выражение аналогично выражению для электрического конденсатора I = CdU /dt (C – емкость конденсатора).

Для участка трубопровода длиной l и площадью поперечного сечения S для идеального (невязкого) газа, движущегося с изменяющейся во времени скоростью v(t), в соответствии со вторым законом Ньютона (F = ma): Sр = r S l dv(t)/dt или ∆р = Lпdm'/dt, что аналогично выражению для ЭДС идеализированной (без сопротивления) катушки: ∆U = LdI/dt (L – индуктивность катушки).

Соотношение ∆р = m'Rп можно считать справедливым при условии, что изменение давления по длине трубопровода вызывает пренебрежимо малое изменение плотности r газа. Тогда можно принять r= const, что означает постоянство объемного расхода газа V' = m'/r. Если трубопровод имеет круглое поперечное сечение радиуса r*, то можно использовать выражение для гидравлического сопротивления при ламинарном течении вязкой несжимаемой жидкости Rг = 8ηl r*4. В этом случае Rп = Rг/r.

В достаточно длинном трубопроводе изменение давления газа может оказаться существенным, что вызовет заметное изменение плотности газа. В этом случае при постоянном расходе массы m' газа по длине трубопровода его объемный расход V' по длине трубопровода будет переменным. По длине трубопровода может также меняться температура – тогда будет изменяться и плотность газа.

Как и в случае несжимаемой жидкости, при турбулентном режиме течения газа зависимость сопротивления трубопровода от расхода газа становится нелинейной.

 

 

6 МАТЕМАТИЧЕСКИЕ МОДЕЛИ РАСПРЕДЕЛЕНИЯ РЕСУРСОВ В ИССЛЕДОВАНИИ ОПЕРАЦИЙ

6.1 Моделирование операций распределения ресурсов

При выборе концепции системы возникают задачи оптимального распределении имеющихся ресурсов системы – задачи выбора решений (способа действий) при целенаправленном функционировании системы. Это может быть организация взаимодействия элементов, определение оптимальных режимов функционирования системы в различных условиях внешней среды.

Такие задачи возникают при организации производства и снабжения, эксплуатации транспортных систем, параметров конструкции, выбора средств производства, вооружения, в здравоохранении, бытовом обслуживании, связи, при боевых действиях и т.д.

Любое целенаправленное действие называется операцией. В общем случае – это совокупность взаимосвязанных действий всех компонентов системы, направленных на решение поставленной задачи.

Модель операции (операционная модель - формализованное описание факторов и связей между ними, отражающих ход операции) представляет собой совокупность, состоящую из субъекта, формирующего цель операции (оперирующей стороны), запаса активных средств (ресурсов) для проведения операции, набора стратегий, т.е. способов использования этих ресурсов, и критерия для сравнения различных стратегий достижения цели операции.

Модель операции разрабатывается на основе схемы операции, представленной в виде ряда последовательных этапов и элементарных действий компонентов для решения поставленной задачи (выполнения цели системы).

Степень соответствия результата операции поставленной ей цели (задаче) характеризуется критерием эффективности, который может зависеть от всех факторов, входящих в модель операции, в том числе, и неопределенных.

И управления, и неопределенные факторы могут быть функциями различной природы и сложности в зависимости от конкретных условий проведения операции, информированности оперирующей стороны.

Основная задача исследования операций – принятие решения о наилучшем способе достижения цели - выбор программы действий (способов использования ресурсов на выполнение операции) – решается методами математического программирования.

Основные разделы теории исследования операций: математическое программирование (линейное и нелинейное, детерминированное и стохастическое), теория принятия решений и теория игр, теория управления запасами, теория массового обслуживания, имитационное моделирование. Выбор метода решения диктуют тип и сложность исследуемой математической модели.

Общая модель операции выработки решения состоит из взаимосвязанных моделей: модели процесса операции (включая модель управляемой системы и модель обстановки проведения операции) и модели принятия решения. При этом учитываются физические и критериальные ограничения.

Физические ограничения ни при каких обстоятельствах не могут быть нарушены, поскольку они выражают законы сохранения.

Пример физических ограничений. Обозначим через qi норму полива – количество воды, которое мы должны направить на орошение единицы земельной площади xi. Тогда

где Q - общее количество воды, которое накоплено в водохранилище.

Кроме того, суммарная площадь земли, которую можно использовать под посевы, также должна быть фиксирована, т.е. величины xi должны удовлетворять еще одному ограничению:

где Х – суммарная земельная площадь.

Критериальные ограничения определяются требованиями к конструкции и не являются такими жесткими – они находятся в распоряжении субъекта и в принципе могут быть нарушены или изменены.

Например, распределяя землю под посевы, необходимо добиться урожая максимальной стоимости, но при заданной структуре конечного продукта, или при проектировании самолета, кроме достижения его максимальной экономичности, могут быть ограничения на его крейсерскую скорость (не меньше заданной).

Математическое программирование – это математическая дисциплина, в которой разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями.

Наличие ограничений делает задачи математического программирования принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах математического программирования оказываются непригодными.

Содержание математического программирования составляют теория и методы решения задач о нахождении экстремумов функций на множествах, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами). В этом и состоит специфика задач математического программирования: множество условий задается не системой уравнений, а системой неравенств, чаще всего экстремум достигается на границах множества условий, где нарушается принцип дифференцируемости, в практических задачах число переменных столь велико, что приводит к необходимости применения аналитических методов или эффективных вычислительных способов получения приближенного решения.

Методы математического программирования используются в экономических, организационных, военных и др. системах для решения так называемых распределительных задач. Распределительные задачи возникают в случае, когда имеющихся в наличии ресурсов не хватает для выполнения каждой из намеченных работ эффективным образом и необходимо наилучшим образом распределить ресурсы по работам в соответствии с выбранным критерием.

Классификация задач математического программирования.

В зависимости от свойств целевой функции и функции ограничений все задачи математического программирования делятся на два основных класса: задачи линейного и нелинейного программирования.

Линейное программирование – целевая функция линейна, а множество, на котором ищется экстремум целевой функции, задается системой линейных равенств и неравенств. В линейном программировании существуют классы задач, структура которых позволяет создать специальные эффективные методы их решения (например, транспортные задачи). Если содержательный смысл требует получения решения в целых числах, то такая задача является задачей целочисленного программирования.

Нелинейное программирование – нелинейны целевая функция и ограничения. Здесь выделяют: выпуклое программирование (выпукла целевая функция и множество, на котором решается экстремальная задача), квадратичное программирование (целевая функция квадратична, а ограничения – линейные равенства и неравенства).

В математическом программировании могут быть выделены два направления – решение детерминированных (вся исходная информация определена) и стохастических задач (параметры носят случайный характер с известными вероятностными характеристиками).

 

Формулировка задачи математического программирования

Задачи математического программирования, как правило, содержат большое число переменных и ограничений и не всегда допускают умозрительный анализ. Здесь требуется тщательная формализация и включение в математическую модель всех сколько-нибудь существенных ограничений.

Прежде чем построить математическую модель задачи, необходимо четко разобраться с ситуацией, описанной в условии. Для этого необходимо с точки зрения заданной задачи, а не математики, ответить на следующие вопросы:

1) Что является искомыми величинами задачи?

2) Какова цель решения? Какой параметр задачи служит критерием эффективности решения, например, прибыль, себестоимость, время и т.д. В каком направлении должно изменяться значение этого параметра (к max или к min) для достижения наилучших результатов?

3) Какие условия в отношении искомых величин и ресурсов задачи должны быть выполнены? Эти условия устанавливают, как должны соотноситься друг с другом различные параметры задачи, например, количество ресурса, затраченного при производстве, и его запас на складе; количество выпускаемой продукции и емкость склада, где она будет храниться; количество выпускаемой продукции и рыночный спрос на эту продукцию и т.д.

После предварительной постановки задачи получают ее формальное решение для простейших случаев, на которых можно проанализировать корректность поставленной задачи. На основании такого анализа вводятся дополнительные параметры и ограничения, проверяется корректность отнесения задачи к тому или иному классу, корректность введения линейности.

Общая схема формализации на основании содержательного описания задачи:

1.Определение переменных задачи (основных параметров).

2. Определение управляющих переменных, характеризующих существо действий и их элементарных составляющих.

3. Формулировка критериев эффективности через параметры и управляющие переменные.

4. Определение ограничений (области допустимых решений) через переменные задачи.

Задача математического программирования содержит n переменных xi (i=1, 2,. . . , n), образующих n-мерный вектор переменных х.

На переменные накладываются ограничения - в форме равенств hi(x) = 0, i = 1, . . . , p или неравенств gi(x) ≥ 0, i = 1, . . . , q.

f(x) – целевая функция (в общем случае нелинейная) всех или некоторых переменных xi (i=1, 2,. . . , n).

Задача математического программирования формулируется следующим образом:

Минимизировать (или максимизировать) f(x) при условиях gi(x) ≥ 0, i = 1, . . . , q; hi(x) = 0, i = 1, . . . , p. Или кратко Min { f(x)│ gi(x) ≥ 0, i = 1, . . . , q; hi(x) = 0, i = 1, . . . , p}.

6.2 Модели линейного программирования

Линейное программирование применяется при решении задач оптимального распределения ресурсов, управления и планирования производства; определения оптимального размещения оборудования; оптимального плана перевозок груза (транспортная задача) и т.д.

Задачи линейного программирования - оптимизационные. Они находят широкое применение в различных областях практической деятельности: при организации работы транспортных систем, в управлении промышленными предприятиями, при составлении проектов сложных систем. Многие распространенные классы задач системного анализа, в частности, задачи оптимального планирования, распределения различных ресурсов, управления запасами, календарного планирования, межотраслевого баланса укладываются в рамки моделей линейного программирования.

Несмотря на различные области приложения, данные задачи имеют единую постановку:

найти значения переменных x1, …, xn, доставляющие оптимум заданной линейной формы z=c1x1 + c2x2+… + cnxn при выполнении системы ограничений, представляющих собой также линейные формы.

В задачах линейного программирования критерий эффективности и функции в системе ограничений линейны.

Если в задаче математического программирования имеется переменная времени, а критерий эффективности выражается через уравнения, описывающие течение операций во времени, то такая задача является задачей динамического программирования.

При описании реальной ситуации с помощью линейной модели следует проверять наличие у модели свойств пропорциональности, аддитивности.

Основные допущения при построении линейных моделей:

- пропорциональность;

- аддитивность;

-. неотрицательность (не может быть отрицательного объема производства).

Пропорциональность - затраты ресурсов пропорциональны объему производства - вклад каждой переменной в целевой функционал и общий объем потребления соответствующих ресурсов должен быть прямо пропорционален величине этой переменной.

Например, если, продавая j-й товар в общем случае по фиксированной цене, фирма будет делать скидку при определенном уровне закупки до более низкого уровня цены, то будет отсутствовать прямая пропорциональность между доходом фирмы и количеством проданного товара. Т.е. в разных ситуациях одна единица j-го товара будет приносить разный доход.

Аддитивность означает, что целевой функционал и ограничения должны представлять собой сумму вкладов от различных переменных. Величина, соответствующая целому объему всегда равна сумме величин, соответствующих его частям при любом способе разбиения на части.

Примером нарушения аддитивности служит ситуация, когда увеличение сбыта одного из конкурирующих видов продукции, производимых одной фирмой, влияет на объем реализации другого.

Решение практической задачи нельзя считать законченным, если найдено оптимальное решение. Некоторые параметры задачи (финансы, запасы сырья, производственные мощности и др.) можно регулировать, что, в свою очередь, может изменить найденное оптимальное решение. Эта информация получается в результате выполнения анализа чувствительности. Анализ чувствительности позволяет оценить влияние этих параметров на оптимальное решение. Если обнаруживается, что оптимальное решение можно улучшить за счет небольших изменений заданных параметров, то целесообразно реализовать эти изменения.

Формулировка общей задачи линейного программирования.

Необходимым условием постановки задачи линейного программирования являются ограничения на наличие ресурсов, величину спроса, производственную мощность предприятия и другие производственные факторы.

Каждая совокупность значений переменных (аргументов функции f), которые удовлетворяют системе ограничений, называется допустимым планом задачи линейного программирования. Функция f, максимум или минимум которой определяется, называется целевой функцией задачи. Допустимый план, на котором достигается максимум или минимум функции f, называется оптимальным планом задачи.

Задачей линейного программирования является выбор из множества допустимых планов наиболее выгодного (оптимального).

В общей постановке задача линейного программирования выглядит следующим образом:

Нужно определить максимум или минимум линейной целевой функции (линейной формы)

при ограничениях в виде равенств или неравенств

, i = 1, . . . , r;

, i = r+1, . . . , g;

, i = g+1, . . . , m;

xij ≥ 0 - требование неотрицательности управляющей переменной

где xj, j=1, . . ., n – управляющие переменные, или решения задачи,

bi, aij, i=1, . . ., m, j=1, . . ., n – параметры,

f – целевая функция.

Задача содержит n переменных и m ограничений.

Множество точек, удовлетворяющих системе ограничений, называется допустимым множеством (областью). Любая точка этого множества называется допустимой точкой (решением, планом). Линейная функция называется целевой функцией. Допустимая точка, которая минимизирует (максимизирует) функцию цели, называется оптимальным планом – решением задачи линейного программирования.

Вканонической форме задача является задачей на максимум (минимум) некоторой линейной функции F, ее система ограничений состоит только из равенств (уравнений). При этом переменные задачи х1, х2, ..., хn являются неотрицательными.

Естественным решением сформулированной задачи линейного программирования является метод простого перебора: найти произвольное решение х1 в допустимой области, вычислить (с, х1), затем найти другое решение х2, вычислить (с, х2) и т.д. и среди полученных значений целевой функции (с, х) выбрать наименьшее. Этот путь перебора оказывается нереализуемым в связи со сложностью поиска допустимых решений, (допустимая область решений имеет бесконечное множество точек) и невозможностью поиска всех допустимых решений. Для решения задач линейного программирования строятся такие схемы поиска, которые позволяют выбирать оптимальный план, не перебирая всех возможных вариантов.

Типовые задачи линейного программирования

Методы линейного программирования позволяют описать широкий круг задач коммерческой деятельности, таких, как: планирование товарооборота; размещение розничной торговой сети города; планирование товароснабжения города, района; прикрепление торговых предприятий к поставщикам; организация рациональных перевозок товаров (транспортная задача); распределение работников торговли по должностям (задача о назначении); организация рациональных закупок продуктов питания (задача о диете); распределение ресурсов; планирование капиталовложений; оптимизация межотраслевых связей; замена торгового оборудования; определение оптимального ассортимента товаров в условиях ограниченной площади; установление рационального режима работы.

– Конец работы –

Эта тема принадлежит разделу:

МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ СЛОЖНЫХ СИСТЕМ

Системность... Системные идеи лежат в основе деятельности человечества с начала его... Необходимость решения специфических проблем связанных с возникновением и развитием больших и сложных систем вызвала...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Модели элементов пневматических систем

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Определение понятия системы
Определение понятия "модель системы" предполагает, прежде всего, определение понятия "система". Определение понятия системы – это тоже модель (лингвистическая

Внешняя среда
Внешняя среда -набор существующих в пространстве и во времени факторов, которые оказывают действие на систему и которые испытывают влияние со стороны системы. Объекты,

Функции системы
Функции системы –действия компонентов системы (преобразования входов в выходы), необходимые для выполнения системой своих задач, обусловленных целью системы (интегративным свой

Системный подход
В основе системного подхода лежит стремление изучить объект (систему, явление, процесс) как нечто целостное и организованное, во всей полноте и многообразии связей – ориентирует на рассмотре

Развитие искусственной системы и ее жизненный цикл
В системе как элементе системы более высокого уровня могут накапливаться противоречия (проблемы), для разрешения которых система должна иметь новые функциональные свойства –

Целевой характер моделирования
Система может иметь практически необозримое количество сущностей (свойств), создание модели всей системы нереально – не существует модели «вообще». Таким образом, моделирование имеет це

Процесс моделирования
Как разделить модель на подмодели, как построить иерархию моделей для исследования элементов (декомпозиция) и как их потом объединить для исследования системы в целом, чтобы объяснить целое через ч

Цели математического моделирования
Создание модели всей системы нереально – не существует модели «вообще». Из этого следует множественность моделей одного объекта: для каждой цели требуется своя модель одно

Анализ чувствительности модели
При построении модели параметров и предположения могут быть приняты с некоторой степенью неопределенности, кроме того, параметры могут изменяться в зависимости от внешних условий и во времени. Чувс

Описание внешних воздействий
Внешние воздействия - совокупность факторов, воздействующих на систему и оказывающих влияние на эффективность ее функционирования. Модель внешних воздействий должна обладать следующими осн

Декомпозиция системы
Система представляется набором моделей, отображающих ее поведение на различных уровнях декомпозиции (стратах). Каждый уровень учитывает присущие ему свойства, переменные и зависимости. Дек

Подготовка исходных данных для математической модели
Исходные данные для разработки математической модели содержат выявленные законы функционирования системы в виде операторов, параметры и переменные модели, условные обозначения, классификацию исходн

Модель состава и структуры системы
Модель состава Модель состава – список элементов системы. Сложность построения модели состава состоит в ее неоднозначности. Это же относится и к границам

Виды структур
В основе исследования структуры лежит ее классификация. Принципы построения и вид модели структуры системы зависят от типа системы и целей исследований. При моделировании систем вообще и,

Установление функциональных зависимостей
После перехода от описания моделируемой системы к ее модели, построенной по блочному принципу, необходимо построить математические модели процессов, происходящих в различных блоках. Исходн

Функционально стоимостной анализ.
Под функционально стоимостным анализом понимают метод системного анализа функций объекта (технологического процесса, производства, системы управления), направленный на поиск технико-экономических р

Пути уменьшения неопределенностей
Неопределенность уменьшается при разработке и анализе альтернативных вариантов, дополнительном анализе неопределенных факторов (сбор и обработка недостающих исходных данных, выявление среди множест

Формализация системы в виде автомата
Технические устройства дискретного действия для переработки информации лежат в основе вычислительных машин, автоматических устройств для управления объектами в системах регулирования и управления и

Формализация системы в виде агрегата
При выборе той или иной схемы формализации системы всегда возникает противоречивая задача – получить как можно более простую модель и обеспечить требуемую точность. При таком подходе различные сист

Моделирование процесса функционирования агрегата
Процесс функционирования агрегата состоит из скачков состояния в моменты поступления входных сигналов и выдачи выходных сигналов и изменений состояния между этими моментами. Цель моделиров

Моделирование агрегативных систем
Агрегативные системы (А-системы) - класс сложных систем, обладающий следующим свойством: существует такое (в общем случае неоднозначное) расчленение системы на элементы, при котором к

Модель сопряжения элементов
Математическая модель сложной системы помимо формального описания элементов обязательно включает формальные описания взаимодействия элементов – модель сопряжения. В модели сопряжения эл

Законы Ньютона.
Рассмотрим систему, модель которой может быть представлена как материальная точка, система материальных точек (механическая система). Материальная точка - тело, размеры и форма которого не

Закон сохранения импульса.
Количество движения (импульс) материальной точки Кi = mivi .Это векторная величина, его направление совпадает с направлением скорости. Количество движения (импульс) системы: К =

Работа, энергия, мощность
Силы служат причиной либо ускорения тела (динамическое действие), либо изменения его формы (статическое действие). Если сила перемещает тело на некоторое расстояние, то она совершает над т

Работа против силы тяжести.
Если тело движется в направлении действия силы тяжести, то над телом совершается работа A = G h или Aт = mg h. Чтобы поднять тело (увеличить расстояние от ц

Работа, затрачиваемая на ускорение.
Если под действием постоянной силы Fуск тело равномерно ускоренно перемещается на расстояние s, то над ним совершается работа Aуск = Fуск s

Работа против сил трения.
Движущееся тело теряет энергию из-за наличия трения, которое действует на поверхности соприкосновения тел и и затрудняет их перемещение относительно друг друга.

Динамика поступательного движения.
Основной закон поступательного движения: производная по времени от количества движения К материальной точки или системы точек относительно неподвижной (инерциальной) системы

Тело, брошено под углом к горизонту.
Как и в случае горизонтально брошенного тела, тело движется, в результате комбинации двух движений: равномерного прямолинейного движения под углом к горизонту и свободного падения в вертикальном на

Движение тела переменной массы.
Дифференциальное уравнение поступательного движения твердого тела, масса которого зависит от времени, имеет вид

Модель колебательного процесса
Колебаниями или колебательным движением называется движение (изменение состояния), обладающее повторяемостью во времени - процесс изменения параметров системы с многократным чередованием их

Модель консервативной системы.
Рассеяние (диссипация) энергии происходит в связи с наличием того или иного вида трения (механическая энергия с течением времени уменьшается за счет преобразования в другие виды энергии, например,

Электрическая подсистема.
Электрическая модель является наиболее и универсальной для описания явлений и процессов различной природы. Типовыми простейшими элементами электрической подсистемы являются резистор с элек

Модели элементов гидравлических систем
Технические системы, в которых происходит перемещение несжимаемой жидкости, принято называть гидравлическими. Зарубин стр. 110 Участок трубопровода. По

Распределение транспортных единиц по линиям
Имеется n транспортных линий, по j–ой линии необходимо выполнить bj рейсов . В на

Выбор средств доставки грузов.
Имеется m грузообразующих пунктов с объемами грузов аi . Имеется n средств доставки грузов (вид

Экономическая интерпретация задач линейного программирования.
Предприятие располагает определенными, ограниченными производственными мощностями - активными средствами (станки, сырье, рабочая сила, энергия и т.д.). Для изготовления различных видов изделий испо

Перевозки взаимозаменяемых продуктов
Известны объемы и потребности продукции каждого вида. Если продукты, подлежащие перевозке, качественно совершенно различны (уголь, цемент, сахар), так что ни один из них не может быть использован в

Перевозка неоднородного продукта на разнородном транспорте.
Для обеспечения перевозок может быть использовано s автохозяйств, в каждом из которых r типов автомашин. Машины разных типов, обладая различными эксплуатационными характеристиками и р

Основные определения
Строгий подход к термину «управление» требует четкого ответа на вопрос, как и за счет чего может быть выполнена цель управления. Основная особенность управления - целенаправленность

Формальная запись системы с управлением
Основная особенность управляемых систем – в системе существуют свободные функции, которыми может распорядиться субъект (устройство, исследователь, лицо, принимающее решение) в своих интересах.

Модели систем автоматического управления
Система автоматического управления стремится сохранить в допустимых пределах отклонения (рассогласования) ошибки между требуемыми и действительными значениями управляемых переменных при помо

Устойчивость движения систем
Система управления постоянно подвергается возмущениям, отклоняющим ее от заданного закона движения. Действие возмущения сопровождается восстанавливающим действием регулятора. В системе возни

Определение программного движения и управление движением
Потребности ракетной техники привели к совершенно новым задачам, поскольку кратковременное движение ракеты рассматривается как единый переходный процесс. Здесь возникла еще одна задача – опт

Модели автоматизированных систем управления
Всякая система управления с точки зрения ее функционирования решает три основные задачи: сбор и передача информации об управляемом объекте, переработка информации, выдача управляющих воздействий на

Формализация отклонения течения производственного процесса от нормального
Рассмотренные схемы формализации предполагали нормальное течение процесса. Нарушения нормального течения процесса (параметры процесса выходят за допустимые пределы) могут быть связаны с расстройств

Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
Пусть процесс поточного производства штучных изделий складывается из операций обработки, сборки и управления. Линия сборки (совокупность устройств, обеспечивающих сборку изделия) состоит и

Формирование структуры системы
Структура формируется на основании сравнительного анализа альтернативных вариантов системы, обеспечивающих решение проблемы с учетом внешней среды и неопределенностей будущего функционирования.

Выбор основных проектных параметров системы
Формирование технического облика системы предполагает выбор рациональных значений основных проектных параметров системы, исходя из ее максимальной эффективности в принятых условиях применения.

Современное состояние САПР
Современное состояние САПР уже позволяет решать замкнутые задачи – реализовать сквозной процесс, включающий несколько этапов: анализ требований к изделию, разработка трехмерной модели изделия (в ря

Направления разработки проектной составляющей САПР
Направления разработки проектной составляющей САПР должны соответствовать ключевым направлениям развития проектируемых технических систем: прежде всего разрабатываются те САПР, внедрение которых в

Хранилища данных и системы оперативной аналитической обработки данных
Рассмотренные способы и возможные архитектуры информационных систем, предназначены для оперативной обработки данных, т.е. для получения текущей информации, позволяющей решать повседневные проблемы

Предпроектные исследования
Проектирование системы начинается с предпроектных исследований, в результате которых определяются цели системы, объем работ, вырабатываются критерии успешности проекта, оцениваются риски. В результ

Постановка задачи
Стадия постановки задачи включает: проведение системно-аналитического обследования и выработка концепции системы, разработка технического задания на проект. Системно-аналитическое обсле

Проектирование системы
На стадии проектирования на основе анализа предметной области и требований к системе, сформулированных в ТЗ, разрабатываются основные архитектурные решения. Архитектура процессов –

Архитектура программного обеспечения
Система состоит из двух видов программного обеспечения – общего и специального. Общее программное обеспечение: - программное обеспечение сетевого доступа к приложениям и БД

Организационное обеспечение системы
Сложность проектирования организационного обеспечения лежит в социальной, а не в технической сфере – задача психологов и психоаналитиков. Внедрение новых технологий обеспечивает неограниченный прям

Реализация и внедрение системы
Разработчики производят итеративное построение реальной системы на основе полученных в предыдущей фазе моделей, а также требований нефункционального характера. Конечные пользователи на этой фазе оц

Оценка потенциальной емкости рынка и потенциального объема продаж
Потенциальная емкость рынка товаров и услуг для конкретной системы (проекта): максимальный объем рынка за определенный период, соответствующий техническим и эксплуатационным возможностям сис

Оценка конкурентоспособности
Оценку конкурентов рассматриваемой системы проводится в два этапа: выявление возможных конкурентов и сравнительный анализ конкурентов. На первом этапе составляется общий список конкурентов

Метод определения чистой текущей стоимости.
Метод оценки приемлемости инвестиций на основе критерия NPV является базовым в современном инвестиционном анализе и широко применяется на практике. Чистая текущая стоимость - NPV

Метод расчета рентабельности инвестиций
Рентабельность инвестиций - PI (profitability index) - это показатель, позволяющий определить, в какой мере возрастет стоимость фирмы (богатство инвестора) в расчете на 1 доллар (рубль, грив

Метод расчета внутренней нормы прибыли
Внутренняя норма прибыли (внутренний коэффициент окупаемости инвестиций, поверочный дисконт) - IRR (internal rate of return) - представляет собой уровень доходности средств, направленных на

Расчет периода окупаемости инвестиций
Период окупаемости инвестиций РР (payback period) - это срок, который необходим для возмещения суммы первоначальных инвестиций (рассчитанный без дисконтирования). Если величины дене

Задачи управления проектами
Успешность деятельности предприятия зависит от непрерывной последовательности управленческих решений по инвестиции в проект и управление проектом. Эти решения базируются на анализе внешней среды кА

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги