рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Определители

Определители - раздел Философия, ВЫСШАЯ МАТЕМАТИКА Определитель Есть Число, Полученное Из Элементов Матрицы A И Ха...

Определитель есть число, полученное из элементов матрицы A и характеризующее её. Матрицы обычно обозначаются символами: det A, |A| или D..

(1.1)
Определитель второго порядка находится следующим образом:

Он равен произведению элементов главной диагонали матрицы минус произведение элементов второй диагонали. Например:

Определитель матрицы 3-го порядка находится следующим образом

(1.2)

Естественно, что запомнить эту формулу довольно трудно. Однако есть правила, которые облегчают выписывание выражения для определителя 3-го порядка. Например,

Правило треугольников: три слагаемых, входящих в исходное выражение со знаком плюс, есть произведения элементов главной диагонали или треугольников, основания которых параллельны этой диагонали. Остальные три слагаемых, входящие со знаком минус, находятся таким же образом, но относительно второй диагонали.

Пример 1.3. Вычислить определитель

Дополнительным минором Mij элемента aij называется определитель, получаемый из данного путем вычеркивания i-й строки и j-го столбца. Алгебраическим дополнением Aij элемента aij называется минор этого элемента, взятого со знаком (–1)i+j, т.е. Aij = (–1)i+jMij.

Используя понятие алгебраического дополнения можно сформулировать теорему о разложении определителя n-го порядка по строке или столбцу.

Теорема. Определитель матрицы A равен сумме произведений всех элементов некоторой строки (или столбца) на их алгебраические дополнения:

Данная теорема лежит в основе одного из основных методов вычисления определителей, т.н. метода понижения порядка.

Свойство 1. Определитель не изменится, если в нем поменять местами строки и столбцы, т.е. при транспонировании матрицы:

.

Данное свойство свидетельствует о равноправии строк и столбцов определителя. Иначе говоря, любое утверждение о столбцах определителя справедливо и для его строк и наоборот.

Свойство 2. Определитель меняет знак при перестановке двух строк (столбцов).

Свойство 3. Если определитель имеет две одинаковые строки (столбца), то он равен нулю.

Свойство 4. Общий множитель всех элементов какой-либо строки (столбца) можно вынести за знак определителя.

Например:

Свойство 5. Если все элементы некоторой строки (столбца) определителя равны нулю, то и сам определитель равен нулю.

Свойство 6. Определитель не изменится, если к элементам одной строки (столбца), прибавить элементы другой строки (столбца), умноженной на какое-либо число.

Свойство 7. Определитель треугольной матрицы равен произведению элементов, стоящих на главной диагонали:

.

Пример 1.4. Вычислить определитель:

.

Решение. Упростим данный определитель, а затем вычислим его, разложив его по элементам 2-й строки:

.

 

 

Пример 1.5. Вычислить определитель:

.

Решение. Способ 1.При помощи элементарных преобразований матрицы, учитывая свойства определителей, будем получать в какой-либо строке или столбце нули, а затем будем разлагать полученный определитель по этой строке или столбцу:

 

 

.

 

Способ 2.При помощи элементарных преобразований матрицы, учитывая свойства определителей, приведем матрицу к треугольному виду:

 

 

.

– Конец работы –

Эта тема принадлежит разделу:

ВЫСШАЯ МАТЕМАТИКА

Сибирский государственный аэрокосмический университет... им академика М Ф Решетн ва...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Определители

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Указания по выполнению контрольных работ
Настоящие методические указания предназначены для студентов экономических специальностей, изучающих курс высшей математики по заочной форме обучения. Объём и содержание предлагаемого раздела «Матем

Матрицы
Матрица – это совокупность чисел, расположенных в виде прямоугольной таблицы. Складывать матрицы можно только одинаковых размеров. При этом получается матрица тех же размеров, элемент

Системы линейных уравнений. Метод Крамера
Рассмотрим систему 3-х уравнений с тремя неизвестными (1.3) Используя определители 3-го поряд

Матричный метод. Обратная матрица
Матрица А–1 называется обратной матрицей по отношению к матрице А, если выполняется равенство AA–1 = A–1A

Метод Гаусса
Рассмотрим произвольную систему линейных уравнений (1.5) В общем случае n¹m

Ранг матрицы
Минором Mk k-го порядка матрицы А называется определитель k-го порядка с элементами, лежащими на пересечении любых k строк и k стол

Векторы и действия над ними
В геометрии под вектором (в узком смысле слова) понимается всякий направленный отрезок. Вектор с началом в точке A и концом в точке B принято обозначать символом

Декартова система координат
Декартовой системой координат называется совокупность точки и базиса. Если базис – ортонормированный, то декартова система называется прямоугольной. Точка в этом случае называется

Векторная алгебра
Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними:

Уравнение прямой
Общим уравнением прямой называется уравнение , (3.1) полученное из уравнения

Уравнение прямой и плоскости в пространстве
Общим уравнением плоскости называется уравнение , (3.6) полученное из уравнения

Кривые второго поряка
Линия – геометрическое понятие, точное и достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах математики различно. В аналитической

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги