рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Рівняння прямої, що проходить через задану точку. Загальне рівняння прямої та його дослідження

Рівняння прямої, що проходить через задану точку. Загальне рівняння прямої та його дослідження - раздел Математика, Розділ 3. Аналітична геометрія Пряма На Площині Визначається, Якщо Задати Точку ...

Пряма на площині визначається, якщо задати точку , яка належить даній прямій, та нормальний вектор , тобто вектор, який перпендикулярний до даної прямої (рис. 5.1).

 
 

 

 


Рис. 5.1

 

Нехай - будь-яка точка, що належить даній прямій. Тоді, якщо точці відповідає радіус-вектор , а точці , то вектор з координатами . Вектори та взаємно- перпендикулярні, тому - векторне рівняння прямої, що проходить через точку . Або рівняння у скалярній формі

 

.

 

Розкриємо дужки, та позначимо , одержимо:

 

.

 

Це рівняння називається загальним рівнянням прямої на площині. Розміщення прямої на площині залежить від коефіцієнтів , і , .

1. , ; - пряма проходить через початок координат.

2. ; - пряма ; - паралельна осі , а якщо , одержимо рівняння осі .

3. ; - пряма ; - паралельна осі , а якщо , маємо рівняння осі .

Приклад. Записати рівняння прямої, що проходить через точку перпендикулярно вектору . На основі рівняння прямої одержимо:

 

,

або

.

 

– Конец работы –

Эта тема принадлежит разделу:

Розділ 3. Аналітична геометрія

На сайте allrefs.net читайте: Розділ 3. Аналітична геометрія.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Рівняння прямої, що проходить через задану точку. Загальне рівняння прямої та його дослідження

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лекція 5. Рівняння лінії на площині. Пряма та криві другого порядку
5.1. Поверхні та лінії у просторі. Їх рівняння. Геометричне тлумачення лінійного рівняння у двомірному та тримірному просторі. 5.2. Рівняння прямої, що проходить через задану точку. Загаль

Поверхні та лінії у просторі. Їх рівняння
  В аналітичній геометрії розв’язують дві основні задачі: 1. Множина точок задана геометричною властивістю. Знайти її рівняння та дослідити його властивості. 2. Дано

Канонічне рівняння прямої, рівняння прямої з кутовим коефіцієнтом
Пряму на площині можна задати таким чином: задати точку та напрямний вектор

Рівняння прямої, що проходить через дві задані точки. Рівняння прямої у відрізках на осях
Якщо дві точки та

Взаємне розміщення двох прямих на площині
  Нехай на площині задано дві прямі з нормальними векторами ;

Нормальне рівняння прямої на площині, відстань від точки до прямої
Нехай за нормальний вектор прямої (рис.5.2) вибрано одиничний вектор

Лінії другого порядку. Загальні рівняння.
  Загальне рівняння лінії другого порядку має вигляд   , &nbs

Канонічні рівняння кола та еліпса
  Колом називається множина точок, відстань кожної з яких до однієї точки, що називається центром, є величина стала. Відстань будь-якої точки кола від її центра – це

Канонічне рівняння гіперболи. Асимптоти гіперболи.
Гіперболою називається множина точок, для яких різниця відстаней від двох фіксованих точок площини, що називаються фокусами, є величина стала. Якщо точка

Парабола. Канонічне рівняння.
  Параболою називається множина точок, відстань яких від фокуса дорівнює відстані від директриси (рис.5.9). Знайдемо канонічне рівняння параболи на основі її геометричної вла

Запитання для самодіагностики
  1. Що таке рівняння лінії? 2. Який вигляд має загальне рівняння прямої? 3. Як записати рівняння прямої з кутовим коефіцієнтом? 4. Який вигляд має рівняння

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги