рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Построение доверительных интервалов

Построение доверительных интервалов - раздел Философия, Методические указания к выполнению домашнего задания по дисциплине «Статистика» Раздел «Общая теория статистики» для студентов всех специальностей Конечной Целью Моделирования Является Оценка Или Прогнозирование Показателя ...

Конечной целью моделирования является оценка или прогнозирование показателя Y в зависимости от значений X.

Прогноз подразделяется на точечный и интервальный и обычно осуществляется не более чем на одну треть размаха:

, (91)

где - точка прогноза.

В точечном прогнозе показателя Y для определяется лишь одно число, которое представляет условное среднее и (при выполнении предпосылок регрессионного анализа) наиболее вероятное значение с точки зрения закономерности, отраженной в модели. В таком прогнозе не учитываются отклонения от закономерностей в результате воздействия случайных и неучтенных факторов.

В интервальном прогнозе отклонения от закономерностей в результате случайных воздействий определяются границами доверительных интервалов.

Доверительным интервалом называется такой интервал, которому с заданной степенью вероятности (называемой доверительной) принадлежат истинные значения показателя при условии, что закономерности, отраженные в модели, не противоречат развитию как на участке наблюдения, так и на участке оценки (или в периоде упреждения прогноза).

Случайные отклонения от модели проявляются в виде ошибок. Поэтому при определении границ, доверительных интервалов необходимо определить из чего складываются возможные ошибки моделирования, оценки и прогнозирования. При условии, что модель адекватна, и возможные ошибки носят случайный характер, следует различать два основных источника ошибок:

1. ошибки аппроксимации (рассеяние наблюдений относительно модели);

2. ошибки оценок параметров модели.

Наличие ошибок первого типа очевидно даже визуально. На рис. 17 видно рассеяние исходных данных относительно модели, и конечно, нельзя предположить, что за границами периода наблюдений фактические значения вдруг подтянуться к модели. Величина ошибок аппроксимации характеризуется остаточной дисперсией или средней квадратической ошибкой . Распределение этих ошибок для адекватных моделей – нормально (нормальность ошибок – одно из условий адекватности).

Ошибки оценок параметров модели обусловлены тем, что их параметры, фиксированные в модели как однозначные, в действительности являются случайными величинами, так как они оцениваются на основе фактических данных, в которых присутствует как закономерная, так и случайная составляющие. Средние значения этих оценок при выполнении предпосылок регрессионного анализа соответствует истинным значениям параметров, а их дисперсии зависят от остаточной дисперсии, числа наблюдений и вида модели.

Общее среднее квадратическое отклонение истинных значений от расчетных может быть представлено как:

(92)

а в точке прогноза:

(93)

Исходя из предпосылки нормального распределения остатков границы доверительных интервалов определяются по формулам:

(94)

Анализ выражений (92, 93) позволяет для моделей парной регрессии сделать вывод, что доверительные интервалы тем шире, чем:

· больше остаточная дисперсия (менее точна модель);

· значение больше удалено от среднего значения ;

· сложнее форма модели;

· больше заданная доверительная вероятность.

Реализацию изложенного алгоритма осуществим с помощью режима «Регрессия». В диалоговом окне данного режима (рис. 18) задаются следующие параметры:

– Конец работы –

Эта тема принадлежит разделу:

Методические указания к выполнению домашнего задания по дисциплине «Статистика» Раздел «Общая теория статистики» для студентов всех специальностей

Государственное образовательное учреждение... высшего профессионального образования Государственный университет управления...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Построение доверительных интервалов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПРОВЕРКА ПЕРВИЧНОЙ ИНФОРМАЦИИ НА ОДНОРОДНОСТЬ, НАЛИЧИЕ АНОМАЛЬНЫХ НАБЛЮДЕНИЙ И НОРМАЛЬНОСТЬ РАСПРЕДЕЛЕНИЯ
Совокупность считается однородной, если коэффициент ее вариации меньше 33%. , (1) где - среднее значение; (2) - среднее квадратическое отклонение; (3) n –

Показатели центра распределения
Средняя арифметическая взвешенная: , (16) где - значения j-ой середины интервалов; - частости j-го интервала. В связи с тем, что в Excel отсутствуе

Показатели вариации
1. Размах вариации (формула 15, ячейка В76). 2. Среднее линейное отклонение (ячейка В87): . (19) 3. Дисперсия (ячейка В88): . (20) 4. Среднее квадратиче

Показатели дифференциации
1. Коэффициент фондовой дифференциации , (26) где - средние значения для 10% банков с наибольшими и для 10% с наименьшими значениями активов. Формула (26) реализована в я

ОПРЕДЕЛЕНИЕ ДОВЕРИТЕЛЬНОГО ИНТЕРВАЛА ДЛЯ СРЕДНЕЙ ВЕЛИЧИНЫ АКТИВОВ БАНКОВ В ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ
Величина доверительного интервала (предельная ошибка выборки) находится из выражения , (37) где t – коэффициент доверия; - средняя ошибка выборки. Средняя

Проверка правила сложения дисперсий и оценка степени влияния факторного признака на величину результативного.
Правило сложения дисперсий заключается в равенстве общей дисперсии сумме средней из внутригрупповых и межгрупповой дисперсий, т.е.: , (42) где общая дисперсия; (43) внутр

Статистический анализ модели
Оценка параметров парной регрессии выполняется исходя из следующих предпосылок [8]. Допустим, что в генеральной совокупности связь между x и y линейна. Наличие случайных отклонений, в

Характеристики точности
Под точностью понимается величина случайных ошибок. Сравнительный анализ точности имеет смысл только для адекватных моделей: среди них лучшей признается модель с меньшими значениями характеристик т

Проверка значимости модели
Сначала проверяется значимость параметров уравнения. Если, например, параметр является незначимым, то необходимо с помощью метода наименьших квадратов получить соответствующее уравнение из которого

Проверка наличия или отсутствия систематической ошибки
1. Проверка свойства нулевого среднего. Рассчитывается среднее значение ряда остатков . (86) Если оно близко к нулю, то считается, что модель не содержит системати

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги