Механический принцип относительности - раздел Механика, Механика – наука о движении и равновесии тел Уравнение, Выражающее Основной Закон Динамики ...
Уравнение, выражающее основной закон динамики отчётливо показывает, что этот закон не может быть справедлив в любой системе отсчёта. Допустим, что система отсчёта XYZ инерциальная. Рассмотрим вторую систему отсчёта X’Y’Z’, движущуюся относительно первой поступательно с постоянной скоростью =const.
Пусть известно движение материальной точки в системе XYZ. Каким будет движение этой же точки в системе координат X’Y’Z’?
Для простоты будем считать оси координат соответственно параллельными.
При t = 0 начала совпадают систем координат совпадают. Скорость направлена в сторону возрастания осей X и X’. Из рисунка видно:
или
(3.1)
Отсюда . Учитывая, что время в механике Ньютона абсолютно , получаем выражения для координат точки М в подвижной системе координат:
Таким образом, ускорение одно и той же в системах XYZ и X’Y’Z’. Говорят, что ускорение инвариантно относительно преобразования Галилея.
Если , то и . Следовательно, если XYZ – инерциальная система координат, то и X’Y’Z’ – инерциальная система отсчета.
Пусть система XYZ – инерциальная. Но m=m’, (она есть функция инвариантных величин – разности координат и разностей скоростей материальных точек).
Отсюда . Таким образом: уравнения механики Ньютона инвариантны относительно преобразований Галилея – эта формулировка отражает принцип относительности Галилея или механический принцип относительности.
Однако движения материальной точки могут быть различными – всё зависит от начальных условий.
Основные понятия механики модели... Материальная точка геометрическая точка снабж нная массой имеющая... Системой отсчета называют тело отсчета жестко связанную с ним систему координат и часы...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:
Механический принцип относительности
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Частные случаи движения точки
РАВНОМЕРНОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ
Равномерное прямолинейное движение математически задается уравнениемНайде
Сложное движение точки
О движении тела судят по движению каждой его точки. Ранее мы рассматривали движение точки в некоторой системе координат, которая условно принималась за неподвижную. Однако на практике приходиться р
Вращение твёрдого тела с постоянным угловым ускорением
Посмотрим, как при этом движении запишется кинематическое уравнение движения тела. Вначале получим формулу, по которой в данном случае можно найти угловую скорость тела. Направим ось 0Z вдол
Общий случай движения твёрдого тела
Покажем, что любое движение твёрдого тела можно представить как сумму двух его движений: поступательного и вращательного.
Пусть тело движется произвольным образом. Выделим
КИНЕТИКА
При изучении кинематики движения тел считалось заданным, и нас не интересовали причины возникновения или вызывающие изменение движения. Перейдём теперь к изучению причин, определяющих механическое
ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ
Опираясь на аксиомы механики, динамика разрабатывает главным образом следствия из второй аксиомы, которую поэтому называют основным законом динамики. Основной закон динамики сформулирован для одной
Характеристика сил
Сила в общем случае зависит от времени, положения точки и скорости:
Однако в ряде практических слу
И законы сохранения
Общие теоремы динамики материальной точки есть логическое следствие основного закона динамики материальных тел: . Общ
Закон сохранения импульса системы.
Рассмотрим вначале систему, состоящую из n материальных точек, каждая из которых взаимодействует с любой другой. Кроме того, на материальные точки системы могут действовать материальные точк
Теорема о движении центра масс
Центром масс или центром инерции системы, состоящей из n материальных точек, называется геометрическая точка, положение которой определяется радиус-вектором
ДИНАМИКА АБСОЛЮТНО ТВЁРДОГО ТЕЛА.
Произвольное движение твердого тела можно описать с помощью двух теорем – теоремы об изменении момента импульса относительного центра масс и теоремы о движении центра масс.
Новости и инфо для студентов