ОБЩИЕ ЗАМЕЧАНИЯ - раздел Строительство, ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ В БАЛКАХ ПРИ ИЗГИБЕ , В Строительной Практике И В Особенности В Машиностроении Часто Встречаются ...
, В строительной практике и в особенности в машиностроении часто встречаются стержни (брусья) с криволинейной осью. На рис. 339
показаны примеры кривых брусьев: крюк подъемного крана, замкнутое кольцо, обод колеса, несущий брус арочного моста — двухшарнир-ная арка. Все эти брусья отличаются той особенностью, что их ось представляет собой плоскую кривую. Брусья с пространственной кривой осью встречаются редко и поэтому здесь не рассматриваются.
Рис. 340
В дальнейшем ограничимся рассмотрением таких плоских кривых брусьев, которые имеют симметричные поперечные сечения, а нагрузка лежит в одной плоскости, совпадающей с осью бруса и осью симметрии сечения. При таких условиях все внутренние силы в произвольном сечении кривого бруса приводятся к трем компонентам *: нормальной силе N, изгибающему моменту Мхи поперечной силе Qu.
Определение значений N, Мхи Quвыполняется, как обычно, с помощью метода сечений (рис. 340). При этом изгибающий момент, так же как и в прямом брусе, подсчитывается относительно оси, проходящей через центр тяжести поперечного сечения.
* Ось Ог направлена по касательной к оси бруса, а ось Оу совпадает с осью симметрии сечения (рис. 340).
На рис. 341 показан брус, заделанный одним концом, ось которого очерчена по дуге окружности. На этом же рисунке показаны
эпюры Мх, Q!tи N от действия силы Р, приложенной на свободном конце. При расчете таких кривых стержней удобно определять положение сечения полярными координатами R и <р.
На сайте allrefs.net читайте: ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ В БАЛКАХ ПРИ ИЗГИБЕ...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:
ОБЩИЕ ЗАМЕЧАНИЯ
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
ОБЩИЕ ЗАМЕЧАНИЯ
Для того чтобы судить о работе изгибаемых балок; недостаточно знать только напряжения, которые возникают в сечениях балки от заданной нагрузки.
Вычисленные напряжения позволяют проверить п
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОСИ ИЗОГНУТОГО БРУСА
При выводе формулы нормальных напряжений при изгибе (см. § 62) была получена связь между кривизной и изгибающим моментом:
1 VI
Формула (9.3) показывает, что кривизна изменяется по
Do , С М , ■. п , .
di=*±)irjdz + C- <а)
Это выражение определяет закон изменения углов поворота касательной по длине балки.
МЕТОД НАЧАЛЬНЫХ ПАРАМЕТРОВ
Задача определения прогибов может быть значительно упрощена, если применять т
З - ei • а
Здесь v ■— прогиб в произвольном сечении первого участка;
М — функция,выражающая значение изгибающего момента
в произвольном сечении первого
Г J д- J у
* В отдельных случаях, когда стержень обладает мал
КОСОЙ ИЗГИБ
Косым изгибом называется такой случай изгиба бруса, при котором плоскость действия суммарного изгибающего момента в сечении не совпадает ни с одной из главных осей инерции. Короче говоря, в
ОДНОВРЕМЕННОЕ ДЕЙСТВИЕ ИЗГИБА И ПРОДОЛЬНОЙ СИЛЫ
Очень многие стержни сооружений и машин работают одновременно как на изгиб, так и на растяжение или сжатие. Простейший случай показан на рис. 285, когда на колонну действует нагрузка, вызывающая в
Gt; х J у
Пользуясь этой формулой, можно определить напряжение в любой точке и найти наибольшее напряжение в данном поперечном сечении.
Если поперечное сечение стержня имеет простую форму, напр
ВНЕЦЕНТРЕННОЕ ДЕЙСТВИЕ ПРОДОЛЬНОЙ СИЛЫ
1. О п р е д е л е н и е напряжений. Рассмотрим случай внецентренного сжатия массивных колонн (рис. 288). Такая задача очень часто встречается в мостостроении при расчете опор мостов и в гражданск
ЯДРО СЕЧЕНИЯ
Рассмотрим случай внецентренного сжатия массивной колонны произвольного поперечного сечения. Предположим, что сила Р перемещается из центра тяжести поперечного сечения по прямой ОА (
ОДНОВРЕМЕННОЕ ДЕЙСТВИЕ КРУЧЕНИЯ С ИЗГИБОМ
Одновременное действие кручения с изгибом чаще всего встречается в различных деталях машин. Например, коленчатый вал воспринимает значительные крутящие моменты и, кроме того, работает на изгиб. Оси
ОСНОВНЫЕ ПОЛОЖЕНИЯ
При оценке прочности различных конструкций и машин часто приходится учитывать, что многие их элементы и детали работают в условиях сложного напряженного состояния.
В гл. III было установ
ЭНЕРГЕТИЧЕСКАЯ ТЕОРИЯ ПРОЧНОСТИ
Энергетическая теория основывается на предположении о том, что количество удельной потенциальной энергии деформации, накопленной к моменту наступления предельного напряженного состояния в мате
О + О2 /О —О 2
]/ (^) () т^««. (12.19)
Для частного случая при оу = 0, положив az — а и хгу = т, имеем
VW. (12.20)
Энергетическая т
ТЕОРИЯ ПРОЧНОСТИ МОРА
Во всех рассмотренных выше теориях в качестве гипотезы, устанавливающей причину наступления предельного напряженного состояния, принималась величина какого-либо одного фактора, например напряжен
ОБЪЕДИНЕННАЯ ТЕОРИЯ ПРОЧНОСТИ
В данной теории различают два вида разрушения материала: хрупкое, которое происходит путем отрыва, и вязкое, наступаю щее от среза (сдвига) *. __________________________________
ПОНЯТИЕ 0 НОВЫХ ТЕОРИЯХ ПРОЧНОСТИ
Выше были изложены основные теории прочности, созданные за длительный период, начиная со второй половины XVII и до начала XX в.
Необходимо отметить, что помимо изложенных существует большо
ОСНОВНЫЕ ПОНЯТИЯ
Тонкостенными называют стержни, длина которых значительно превышает основные размеры b или h поперечного сечения (в 8— 10 раз), а последние, в свою очередь, значительно превосх
СВОБОДНОЕ КРУЧЕНИЕ ТОНКОСТЕННЫХ СТЕРЖНЕЙ
Свободным кручением называется такое кручение, при котором депланация всех поперечных сечений стержня будет одинаковой.
Так, на рис. 310, а, б показан стержень, нагруженный н
Т - М" А /пи
Угол закручивания полосы находится из выражения
d
В формулах (13.1) и (13.2) о
ЧИСТЫЙ ИЗГИБ КРИВОГО БРУСА
Для определения напряжений при чистом изгибе плоского кривого бруса, так же как для прямого бруса, считаем справедливой гипотезу плоских сечений. Определяя деформации волокон бруса, пренебрегаем н
МЕТОД ЭЙЛЕРА ДЛЯ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКИХ СИЛ. ВЫВОД ФОРМУЛЫ ЭЙЛЕРА
Для исследования устойчивости равновесия упругих систем имеется несколько методов. Основы и техника применения этих методов изучаются в специальных курсах, посвященных проблемам устойчивости разли
СТЕРЖНЯ НА ВЕЛИЧИНУ КРИТИЧЕСКОЙ СИЛЫ
На рис. 358 показаны различные случаи закрепления концов сжатого стержня. Для каждой из этих зада*ч необходимо проводить свое решение аналогично тому, как это сделано в предыдущем параграфе для ша
Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Новости и инфо для студентов