ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ НЕЙТРАЛЬНОЙ ОСИ В КРИВОМ БРУСЕ ПРИ ЧИСТОМ ИЗГИБЕ
ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ НЕЙТРАЛЬНОЙ ОСИ В КРИВОМ БРУСЕ ПРИ ЧИСТОМ ИЗГИБЕ - раздел Строительство, ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ В БАЛКАХ ПРИ ИЗГИБЕ Для Вычисления Напряжений По Формуле (14.6), Полученной В Предыдущем Парагра...
Для вычисления напряжений по формуле (14.6), полученной в предыдущем параграфе, необходимо знать, как проходит нейтральная ось. Для этой цели надо определить радиус кривизны нейтрального слоя г или расстояние от центра тяжести до нейтральной оси у0 (рис. 346). Зависимость между указанными величинами у0= R — г позволяет, зная одну из них, легко определить другую.
При точном решении задачи необходимо исходить из условия (14.2). Для каждого типа поперечного сечения получится свое значение радиуса кривизны нейтрального слоя.
Преобразуем выражение (14.2). Учитывая, что
получим
откуда
(14,9)
Рассмотрим частный случай стержня с прямоугольным сечением (рис. 347).
Так как для этого случая
Следовательно,
(14.10)
Для некоторых других типов поперечных сечений результаты решения приведены в табл. 9.
Во многих случаях определение положения нейтральной оси можно произвести приближенно.
Для приближенного решения используем формулу (14.7)
но, с другой стороны [см. (14.4)], имеем
Sx = Fy0. Приравнивая два полученных выражения, находим
Чем меньше кривизна бруса, тем больше момент инерции кривого бруса приближается к обычному моменту инерции. Для приближенного решения можно положить
следовательно,
(14-11)
Так, например, для прямоугольного сечения получим
для круглого сечения
Приближенные формулы (см. табл. 9) дают хорошую точность
ОБЩИЕ ЗАМЕЧАНИЯ
Для того чтобы судить о работе изгибаемых балок; недостаточно знать только напряжения, которые возникают в сечениях балки от заданной нагрузки.
Вычисленные напряжения позволяют проверить п
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОСИ ИЗОГНУТОГО БРУСА
При выводе формулы нормальных напряжений при изгибе (см. § 62) была получена связь между кривизной и изгибающим моментом:
1 VI
Формула (9.3) показывает, что кривизна изменяется по
Do , С М , ■. п , .
di=*±)irjdz + C- <а)
Это выражение определяет закон изменения углов поворота касательной по длине балки.
МЕТОД НАЧАЛЬНЫХ ПАРАМЕТРОВ
Задача определения прогибов может быть значительно упрощена, если применять т
З - ei • а
Здесь v ■— прогиб в произвольном сечении первого участка;
М — функция,выражающая значение изгибающего момента
в произвольном сечении первого
Г J д- J у
* В отдельных случаях, когда стержень обладает мал
КОСОЙ ИЗГИБ
Косым изгибом называется такой случай изгиба бруса, при котором плоскость действия суммарного изгибающего момента в сечении не совпадает ни с одной из главных осей инерции. Короче говоря, в
ОДНОВРЕМЕННОЕ ДЕЙСТВИЕ ИЗГИБА И ПРОДОЛЬНОЙ СИЛЫ
Очень многие стержни сооружений и машин работают одновременно как на изгиб, так и на растяжение или сжатие. Простейший случай показан на рис. 285, когда на колонну действует нагрузка, вызывающая в
Gt; х J у
Пользуясь этой формулой, можно определить напряжение в любой точке и найти наибольшее напряжение в данном поперечном сечении.
Если поперечное сечение стержня имеет простую форму, напр
ВНЕЦЕНТРЕННОЕ ДЕЙСТВИЕ ПРОДОЛЬНОЙ СИЛЫ
1. О п р е д е л е н и е напряжений. Рассмотрим случай внецентренного сжатия массивных колонн (рис. 288). Такая задача очень часто встречается в мостостроении при расчете опор мостов и в гражданск
ЯДРО СЕЧЕНИЯ
Рассмотрим случай внецентренного сжатия массивной колонны произвольного поперечного сечения. Предположим, что сила Р перемещается из центра тяжести поперечного сечения по прямой ОА (
ОДНОВРЕМЕННОЕ ДЕЙСТВИЕ КРУЧЕНИЯ С ИЗГИБОМ
Одновременное действие кручения с изгибом чаще всего встречается в различных деталях машин. Например, коленчатый вал воспринимает значительные крутящие моменты и, кроме того, работает на изгиб. Оси
ОСНОВНЫЕ ПОЛОЖЕНИЯ
При оценке прочности различных конструкций и машин часто приходится учитывать, что многие их элементы и детали работают в условиях сложного напряженного состояния.
В гл. III было установ
ЭНЕРГЕТИЧЕСКАЯ ТЕОРИЯ ПРОЧНОСТИ
Энергетическая теория основывается на предположении о том, что количество удельной потенциальной энергии деформации, накопленной к моменту наступления предельного напряженного состояния в мате
О + О2 /О —О 2
]/ (^) () т^««. (12.19)
Для частного случая при оу = 0, положив az — а и хгу = т, имеем
VW. (12.20)
Энергетическая т
ТЕОРИЯ ПРОЧНОСТИ МОРА
Во всех рассмотренных выше теориях в качестве гипотезы, устанавливающей причину наступления предельного напряженного состояния, принималась величина какого-либо одного фактора, например напряжен
ОБЪЕДИНЕННАЯ ТЕОРИЯ ПРОЧНОСТИ
В данной теории различают два вида разрушения материала: хрупкое, которое происходит путем отрыва, и вязкое, наступаю щее от среза (сдвига) *. __________________________________
ПОНЯТИЕ 0 НОВЫХ ТЕОРИЯХ ПРОЧНОСТИ
Выше были изложены основные теории прочности, созданные за длительный период, начиная со второй половины XVII и до начала XX в.
Необходимо отметить, что помимо изложенных существует большо
ОСНОВНЫЕ ПОНЯТИЯ
Тонкостенными называют стержни, длина которых значительно превышает основные размеры b или h поперечного сечения (в 8— 10 раз), а последние, в свою очередь, значительно превосх
СВОБОДНОЕ КРУЧЕНИЕ ТОНКОСТЕННЫХ СТЕРЖНЕЙ
Свободным кручением называется такое кручение, при котором депланация всех поперечных сечений стержня будет одинаковой.
Так, на рис. 310, а, б показан стержень, нагруженный н
Т - М" А /пи
Угол закручивания полосы находится из выражения
d
В формулах (13.1) и (13.2) о
ОБЩИЕ ЗАМЕЧАНИЯ
, В строительной практике и в особенности в машиностроении часто встречаются стержни (брусья) с криволинейной осью. На рис. 339
ЧИСТЫЙ ИЗГИБ КРИВОГО БРУСА
Для определения напряжений при чистом изгибе плоского кривого бруса, так же как для прямого бруса, считаем справедливой гипотезу плоских сечений. Определяя деформации волокон бруса, пренебрегаем н
МЕТОД ЭЙЛЕРА ДЛЯ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКИХ СИЛ. ВЫВОД ФОРМУЛЫ ЭЙЛЕРА
Для исследования устойчивости равновесия упругих систем имеется несколько методов. Основы и техника применения этих методов изучаются в специальных курсах, посвященных проблемам устойчивости разли
СТЕРЖНЯ НА ВЕЛИЧИНУ КРИТИЧЕСКОЙ СИЛЫ
На рис. 358 показаны различные случаи закрепления концов сжатого стержня. Для каждой из этих зада*ч необходимо проводить свое решение аналогично тому, как это сделано в предыдущем параграфе для ша
Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Новости и инфо для студентов