Доведення - раздел Философия, НАБЛИЖЕННЯ ЧИСЕЛ. ЧИСЕЛЬНІ МЕТОДИ РОЗВ’ЯЗУВАННЯ ЗАДАЧ ОБЧИСЛЮВАЛЬНОЇ МАТЕМАТИКИ Нехай Дано Точні Числа Х1,х2,...,хn Та Х1,х2,...,хn. Розглянемо Їх Алгебраїчн...
Нехай дано точні числа х1,х2,...,хn та Х1,Х2,...,ХN. Розглянемо їх алгебраїчну суму:
тоді гранична абсолютна похибка:
Наслідок: гранична абсолютна похибка суми не може бути меншою за граничну абсолютну похибку найменш точного доданку, тому існує практичне правило додавання наближених чисел з різною абсолютною точністю.
Щоб додати кілька наближених чисел з різною абсолютною точністю потрібно виділити і залишити без зміни числа, десятковий запис яких закінчується найраніше. Всі інші числа заокруглити на зразок виділених залишивши в резерві 1-2 цифри виконати додавання, отриманий результат заокруглити на 1-н знак.
Теорема: якщо доданки одного знаку, то гранична відносна похибка їх суми не перевищує найбільшої відносної похибки доданків.
Зауваження: про втрату точності при відніманні близьких чисел.
Нехай маємо два числа х1, х2. розглянемо їх різницю , , тому в обчисленнях намагаються уникати випадків, де віднімаються близькі числа.
Приклад 1.
=47,132
=47,111
==0,0005
=-=0,021
=0,001
=
Приклад2:
Теорема 3: відносні похибки добутку кількох наближених чисел відмінних від нуля не перевищує суми відносних похибок цих чисел.
Метод Гауса
Теоретичні відомості
Найпростішим методом розв’язування систем лінійних алгебраїчних рівнянь є метод послідовного включення змінних, або метод Гауса. Є кілька модиф
ФОРМУЛИ ТРАПЕЦІЇ.
В формули (1), (2) підставимо , тоді з формули (2) будемо мати:
КУСКОВО-КУБІЧНА СПЛАЙН ІНТЕРПОЛЯЦІЯ.
Означення: Сплайном називається функція для якої існує поділ її області визначення на підобласті, такі що в середині кожної підобласті ця функція є многочленом деякого степеня
Найкращого наближення.
Теорема Веєрштраса вказує що найкраще наближення існує, але не дає практичного способу побудови.
Ефективних способів точної побудови многочлена найкращого наближення до даної функції не іс
Новости и инфо для студентов