N.1 НАБЛИЖЕННЯ АЛГЕБРАЇЧНИМИ МНОГОЧЛЕНАМИ. - раздел Философия, НАБЛИЖЕННЯ ЧИСЕЛ. ЧИСЕЛЬНІ МЕТОДИ РОЗВ’ЯЗУВАННЯ ЗАДАЧ ОБЧИСЛЮВАЛЬНОЇ МАТЕМАТИКИ Візьмемо Метричний Простір ...
Візьмемо метричний простір функцій сумовних з квадратом, тобто функцій для яких виконується умова .
Для довільних функцій скалярний добуток задамо так: . Легко перевірити, що всі аксіоми скалярного добутку тут виконуються, якщо дві функції, які відрізняються на множині міри нуль вважати рівними.
Означення: Найкраще наближення в просторі називається найкращим середньоквадратичним наближенням або наближенням за методом найменших квадратів.
В якості лінійно-незалежної системи візьмемо функції: , елемент найкращого наближення будемо шукати в множині многочленів виду: . Виходячи з загальної теорії стверджуємо, що многочлен найкращого наближення існує, для його побудови потрібно знайти розв’язок системи (2) з попереднього параграфа, вважаючи, що , .
Розділ... НАБЛИЖЕННЯ ЧИСЕЛ... ЧИСЕЛЬНІ МЕТОДИ РОЗВ ЯЗУВАННЯ ЗАДАЧ ОБЧИСЛЮВАЛЬНОЇ МАТЕМАТИКИ...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:
N.1 НАБЛИЖЕННЯ АЛГЕБРАЇЧНИМИ МНОГОЧЛЕНАМИ.
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Метод Гауса
Теоретичні відомості
Найпростішим методом розв’язування систем лінійних алгебраїчних рівнянь є метод послідовного включення змінних, або метод Гауса. Є кілька модиф
ФОРМУЛИ ТРАПЕЦІЇ.
В формули (1), (2) підставимо , тоді з формули (2) будемо мати:
КУСКОВО-КУБІЧНА СПЛАЙН ІНТЕРПОЛЯЦІЯ.
Означення: Сплайном називається функція для якої існує поділ її області визначення на підобласті, такі що в середині кожної підобласті ця функція є многочленом деякого степеня
Найкращого наближення.
Теорема Веєрштраса вказує що найкраще наближення існує, але не дає практичного способу побудови.
Ефективних способів точної побудови многочлена найкращого наближення до даної функції не іс
Новости и инфо для студентов